Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Micromachines (Basel) ; 14(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36984939

RESUMO

The applicability of a gas-permeable, thermoplastic material polymethylpentene (PMP) was investigated, experimentally and analytically, for organ-on-a-chip (OoC) and long-term on-a-chip cell cultivation applications. Using a sealed culture chamber device fitted with oxygen sensors, we tested and compared PMP to commonly used glass and polydimethylsiloxane (PDMS). We show that PMP and PDMS have comparable performance for oxygen supply during 4 days culture of epithelial (A549) cells with oxygen concentration stabilizing at 16%, compared with glass control where it decreases to 3%. For the first time, transmission light images of cells growing on PMP were obtained, demonstrating that the optical properties of PMP are suitable for non-fluorescent, live cell imaging. Following the combined transmission light imaging and calcein-AM staining, cell adherence, proliferation, morphology, and viability of A549 cells were shown to be similar on PMP and glass coated with poly-L-lysine. In contrast to PDMS, we demonstrate that a film of PMP as thin as 0.125 mm is compatible with high-resolution confocal microscopy due to its excellent optical properties and mechanical stiffness. PMP was also found to be fully compatible with device sterilization, cell fixation, cell permeabilization and fluorescent staining. We envision this material to extend the range of possible microfluidic applications beyond the current state-of-the-art, due to its beneficial physical properties and suitability for prototyping by different methods. The integrated device and measurement methodology demonstrated in this work are transferrable to other cell-based studies and life-sciences applications.

2.
Clin Neurophysiol ; 136: 82-92, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151966

RESUMO

OBJECTIVES: In many neuromuscular diseases, weakness results from a disruption in muscle fibres' arrangement within a motor unit. Limitations in current techniques mean that the spatial distribution of fibres in human motor units remains unknown. METHODS: A flexible multi-channel electrode was developed and bonded to a clinical electromyography (EMG) needle. Muscle fibre action potentials were localised using a novel deconvolution method. This was tested using simulated data, and in recordings collected from the tibialis anterior muscle of healthy subjects. RESULTS: Simulated data indicated good localisation reliability across all sections of the electrode except the end sections. A corrected fibre density was estimated up to 1.4 fibres/mm2. Across five recordings from three individuals, between 4 and 14 motor units were detected. Between 1 and 20 muscle fibres were localised per motor unit within the electrode detection area, with up to 220 muscle fibres localised per recording, with overlapping motor unit territories. CONCLUSIONS: We provide the first direct evidence that human motor units spatially overlap, as well as data related to the spatial arrangement of muscle fibres within a motor unit. SIGNIFICANCE: As well as providing insights into normal human motor physiology, this technology could lead to faster and more accurate diagnosis in patients with neuromuscular diseases.


Assuntos
Neurônios Motores , Doenças Neuromusculares , Potenciais de Ação , Eletromiografia/métodos , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Doenças Neuromusculares/diagnóstico por imagem , Reprodutibilidade dos Testes
3.
Front Neurosci ; 15: 718311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566564

RESUMO

Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations in vitro and in vivo.

4.
IEEE Trans Neural Syst Rehabil Eng ; 28(10): 2136-2143, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790633

RESUMO

The development of hardware for neural interfacing remains a technical challenge. We introduce a flexible, transversal intraneural tungsten:titanium electrode array for acute studies. We characterize the electrochemical properties of this new combination of tungsten and titanium using cyclic voltammetry and electrochemical impedance spectroscopy. With an in-vivo rodent study, we show that the stimulation of peripheral nerves with this electrode array is possible and that more than half of the electrode contacts can yield a stimulation selectivity index of 0.75 or higher at low stimulation currents. This feasibility study paves the way for the development of future cost-effective and easy-to-fabricate neural interfacing electrodes for acute settings, which ultimately can inform the development of technologies that enable bi-directional communication with the human nervous system.


Assuntos
Titânio , Estimulação Elétrica Nervosa Transcutânea , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Estudos de Viabilidade , Nervos Periféricos
5.
IEEE Trans Biomed Eng ; 67(11): 3004-3015, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32091984

RESUMO

Brain-machine Interfaces (BMI) hold great potential for treating neurological disorders such as epilepsy. Technological progress is allowing for a shift from open-loop, pacemaker-class, intervention towards fully closed-loop neural control systems. Low power programmable processing systems are therefore required which can operate within the thermal window of 2° C for medical implants and maintain long battery life. In this work, we have developed a low power neural engine with an optimized set of algorithms which can operate under a power cycling domain. We have integrated our system with a custom-designed brain implant chip and demonstrated the operational applicability to the closed-loop modulating neural activities in in-vitro and in-vivo brain tissues: the local field potentials can be modulated at required central frequency ranges. Also, both a freely-moving non-human primate (24-hour) and a rodent (1-hour) in-vivo experiments were performed to show system reliable recording performance. The overall system consumes only 2.93 mA during operation with a biological recording frequency 50 Hz sampling rate (the lifespan is approximately 56 hours). A library of algorithms has been implemented in terms of detection, suppression and optical intervention to allow for exploratory applications in different neurological disorders. Thermal experiments demonstrated that operation creates minimal heating as well as battery performance exceeding 24 hours on a freely moving rodent. Therefore, this technology shows great capabilities for both neuroscience in-vitro/in-vivo applications and medical implantable processing units.


Assuntos
Interfaces Cérebro-Computador , Epilepsia , Algoritmos , Animais , Encéfalo/cirurgia , Optogenética
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3742-3745, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946688

RESUMO

This paper proposes design considerations that need to be followed in order to eliminate potential sources of artefact that could distort a recorded neural signal. The artefact that appears in a recorded signal has a combination of potential sources each of which contributes towards its formation. As such, these sources of artefact have been addressed in three main categories: a) electronics artefact, b) encapsulation artefact and c) interface artefact. Each source (component) is analyzed further and appropriate design techniques and considerations are suggested towards its mitigation.


Assuntos
Eletroencefalografia , Eletrônica , Artefatos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA