Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 250: 109472, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31521031

RESUMO

In the present study, ZnO nanoparticles were anchored on a magnetic core/shell structure (SiO2@Fe3O4) to perpetrate ZnO@SiO2@Fe3O4 and then coupled with UV light as a heterogeneous nanocatalyst for activating peroxymonosulfate (PMS) into diazinon (DZ) degradation. Several techniques like XRD (X-ray diffraction), BET (Brunaeur, Emmett and Teller), TEM (Transmission electron microscope), FESEM (Field emission-scanning electron microscope) coupled with EDS (Energy Dispersive X-ray Spectrometer), PL (photoluminescence), VSM (Vibrating Sample Magnetometer) and UV-vis diffuse reflectance spectroscopy (DRS) were applied for identification of catalyst features. A possible mechanism for PMS activation and DZ degradation was proposed in details. The effect of solution pH, various concentrations of catalyst, PMS and DZ, quenching agents, different chemical oxidants and co-existing anions was assessed as operating factors to determine the optimum conditions. PMS decomposed effectively in coupling with ZnO@SiO2@Fe3O4 and UV. At optimal conditions, over 95 and 56% of DZ and TOC were removed during 60 min reaction, respectively. The complete degradation of DZ was confirmed using its absorption peak in UV-vis spectra analysis over 60 min treatment. A wide variety of free radicals was identified during quenching tests. HO• and h+ played a pivotal role in the degradation process of DZ. Decreasing the degradation efficiency in the presence of anions was as Cl- > CO32- > NO3- > PO43- > SO42- > HCO3-. A negligible amount of leaching Fe (<0.2 mg/L) was found for ZnO@SiO2@Fe3O4, indicating that the catalyst possesses a high stability in oxidation systems. In addition, a significant potential was achieved in reusing of catalyst within five consecutive runs. In conclusion, ZnO@SiO2@Fe3O4/PMS/UV hybrid system can be utilized as a promising advanced oxidation process into efficient degradation of pesticides, thanks to easy recovery, high catalytic activity, co-production of different reactive species and high durability and recyclability potential.


Assuntos
Diazinon , Praguicidas , Óxido de Zinco , Peróxidos , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA