Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Lett ; 39(1): 157-162, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714557

RESUMO

OBJECTIVES: To establish an efficient method of chemoenzymatic modification for making N-linked oligosaccharide chains of glycoproteins structurally homogeneous, which crucially affects their bioactivities. RESULTS: Deglycosylated-RNase B (GlcNAc-RNase B; acceptor), sialylglyco (SG)-oxazoline (donor) and an N180H mutant of Coprinopsis cinerea endo-ß-N-acetylglucosaminidase (Endo-CCN180H) were employed. pH 7.5 was ideal for both SG-oxazoline's stability and Endo-CC's transglycosylation reaction. The most efficient reaction conditions for producing glycosylated-RNase B, virtually modified completely with sialo-biantennary-type complex oligosaccharide, were: 80 µg GlcNAc-RNase B, 200 µg SG-oxazoline and 3 µg Endo-CCN180H in 20 µl 20 mM Tris/HCl pH 7.5 at 30 °C for 30-60 min. CONCLUSIONS: This transglycosylation method using SG-oxazoline and Endo-CCN180H is beneficial for producing pharmaceutical glycoproteins modified with homogenous biantennary-complex-type oligosaccharides.


Assuntos
Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Oligossacarídeos/metabolismo , Glicosilação
3.
Sci Rep ; 8(1): 246, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321565

RESUMO

Endo-ß-N-acetylglucosaminidase (ENGase) catalyzes hydrolysis of N-linked oligosaccharides. Although many ENGases have been characterized from various organisms, so far no fucose-containing oligosaccharides-specific ENGase has been identified in any organism. Here, we screened soil samples, using dansyl chloride (Dns)-labeled sialylglycan (Dns-SG) as a substrate, and discovered a strain that exhibits ENGase activity in the culture supernatant; this strain, named here as strain HMA12, was identified as a Sphingobacterium species by 16S ribosomal RNA gene analysis. By draft genome sequencing, five candidate ENGase encoding genes were identified in the genome of this strain. Recombinant proteins, purified from Escherichia coli expressing candidate genes ORF1152, ORF1188, ORF3046 and ORF3750 exhibited fucose-containing oligosaccharides-specific ENGase activity. These ENGases exhibited optimum activities at very acidic pHs (between pH 2.3-2.5). BLAST searches using sequences of these candidate genes identified two fungal homologs of ORF1188, one in Beauveria bassiana and the other in Cordyceps militaris. Recombinant ORF1188, Beauveria and Cordyceps ENGases released the fucose-containing oligosaccharides residues from rituximab (immunoglobulin G) but not the high-mannose-containing oligosaccharides residues from RNase B, a result that not only confirmed the substrate specificity of these novel ENGases but also suggested that natural glycoproteins could be their substrates.


Assuntos
Fucose/metabolismo , Imunoglobulina G/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Oligossacarídeos/metabolismo , Sphingobacterium/enzimologia , Sphingobacterium/genética , Sequência de Aminoácidos , Cromatografia Líquida , Clonagem Molecular , Ativação Enzimática , Fucose/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Hidrólise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Oligossacarídeos/química , Fases de Leitura Aberta , Filogenia , Proteólise , Proteínas Recombinantes , Microbiologia do Solo , Sphingobacterium/classificação , Especificidade por Substrato
4.
PLoS One ; 10(7): e0132859, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197478

RESUMO

Endo-ß-N-acetylglucosaminidase (ENGase), which catalyzes hydrolysis of N-linked oligosaccharides, is a useful tool for analyzing oligosaccharide contents of glycoproteins. However, there are only a few known ENGases that can catalyze the hydrolysis of human complex type oligosaccharides, and although commercially available, they are expensive. Here, we report the cloning of two ENGase encoding cDNAs from the basidiomycete fungus Coprinopsis cinerea, Endo-CC1 and Endo-CC2. We successfully expressed recombinant His6-tagged Endo-CC1 and Endo-CC2 in Escherichia coli and purified them for enzymatic characterization. Both Endo-CC1 and Endo-CC2 showed hydrolytic activity on high-mannose and complex type oligosaccharides. Since Endo-CC1 could be prepared more easily than Endo-CC2 from E. coli cultures, we examined the enzymatic properties of Endo-CC1 in detail. Our results showed that Endo-CC1 acted on both N-linked high-mannose type and sialobiantennary type complex oligosaccharides of glycoproteins RNase B and human transferrin, respectively, but not on the sialotriantennary type complex oligosaccharide of glycoprotein fetuin. Examination of the transglycosylation activity of Endo-CC1 revealed that the wild-type Endo-CC1 could not transfer the sialobiantennary type complex oligosaccharide onto the deglycosylated RNase B. To obtain an Endo-CC1 mutant with desired transglycosylation activity, we performed mutation analysis of the active site residue Asn 180 (N180), known to be important for catalysis, by individually replacing it with the remaining 19 amino acid residues. Transglycosylation analyses of these mutants led us to identify one mutant, namely Endo-CC1N180H, which exhibited the desired transglycosylation activity. Taken together, we suggest that Endo-CC1 would potentially be a valuable tool for analyzing oligosaccharides on glycoproteins, as large quantities of it could be made available more easily and less expensively than the currently used enzyme, Endo-M.


Assuntos
Acetilglucosaminidase/metabolismo , Basidiomycota/enzimologia , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Mutação , Acetilglucosaminidase/genética , Catálise , Clonagem Molecular , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Hidrolases/metabolismo , Hidrólise , Manose/metabolismo , Oligossacarídeos/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Ribonucleases/metabolismo , Alinhamento de Sequência , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA