Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(6): 2835-2843, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31957436

RESUMO

Absorption spectra of cyanine⊕·Br⊖ salts show a remarkable solvent dependence in non/polar solvents, exhibiting narrow, sharp band shapes in dichloromethane but broad features in toluene; this change was attributed to ion pair association, stabilizing an asymmetric dipolar structure, similar to the situation in the crystal (Bouit, P.-A., et al. J. Am. Chem. Soc. 2010, 132, 4328). Our density functional theory (DFT)-based quantum mechanics/molecular mechanics (QM/MM) calculations of the crystals evidence the crucial role of specific asymmetric anion positioning on the lowering of the symmetry. Molecular dynamics (MD) simulations prove the ion pair association in nonpolar solvents. Time-dependent DFT vibronic calculations in toluene show that ion pairing indeed stabilizes an asymmetric dipolar structure in the electronic ground state. This largely broadens the absorption spectrum in very reasonable agreement with experiment, while the principal pattern of vibrational modes is retained. The current findings allow us to establish a unified picture of the symmetry breaking of polymethine dyes in fluid solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA