RESUMO
During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.
Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Agrobacterium tumefaciens/classificação , Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular , Peptidoglicano , Amidoidrolases/genética , Amidoidrolases/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Sequência Conservada/genética , Deleção de GenesRESUMO
Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.
Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Fibrose Cística/complicações , Pulmão/microbiologia , Genômica , MutaçãoRESUMO
BackgroundThe current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture for testing is usually performed by trained staff at healthcare centres. Long travel distances to healthcare centres in rural regions may introduce a bias of testing towards relatively large communities with closer access. Rural regions are therefore often not represented in population-based data.AimThe aim of this retrospective cohort study was to develop and implement a strategy for at-home testing in a rural region of Sweden during spring 2021, and to evaluate its role to provide equal health care for its inhabitants.MethodsWe developed a sensitive method to measure antibodies to the S-protein of SARS-CoV-2 and optimised this assay for clinical use together with a strategy of at-home capillary blood sampling.ResultsWe demonstrated that our ELISA gave comparable results after analysis of capillary blood or serum from SARS-CoV-2-experienced individuals. We demonstrated stability of the assay under conditions that reflected temperature and humidity during winter or summer. By assessment of capillary blood samples from 4,122 individuals, we could show both feasibility of the strategy and that implementation shifted the geographical spread of testing in favour of rural areas.ConclusionImplementation of at-home sampling enabled citizens living in remote rural areas access to centralised and sensitive laboratory antibody tests. The strategy for testing used here could therefore enable disease control authorities to get rapid access to information concerning immunity to infectious diseases, even across vast geographical distance.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Retrospectivos , Suécia/epidemiologia , Teste para COVID-19 , Anticorpos AntiviraisRESUMO
Pyridoxal 5'-phosphate (PLP) is a versatile cofactor involved in a large variety of enzymatic processes. Most of PLP-catalysed reactions, such as those of alanine racemases (AlaRs), present a common resting state in which the PLP is covalently bound to an active-site lysine to form an internal aldimine. The crystal structure of BsAlaR grown in the presence of Tris lacks this covalent linkage and the PLP cofactor appears deformylated. However, loss of activity in a Tris buffer only occurred after the solution was frozen prior to carrying out the enzymatic assay. This evidence strongly suggests that Tris can access the active site at subzero temperatures and behave as an alternate racemase substrate leading to mechanism-based enzyme inactivation, a hypothesis that is supported by additional X-ray structures and theoretical results from QM/MM calculations. Taken together, our findings highlight a possibly underappreciated role for a common buffer component widely used in biochemical and biophysical experiments.
Assuntos
Alanina Racemase/metabolismo , Bacillus subtilis/enzimologia , Temperatura Baixa , Iminas/metabolismo , Alanina Racemase/química , Alanina Racemase/isolamento & purificação , Iminas/química , Modelos Moleculares , Estrutura Molecular , Teoria QuânticaRESUMO
Lytic bacteriophages and phage-encoded endolysins (peptidoglycan hydrolases) provide a source for the development of novel antimicrobial strategies. In the present study, we focus on the closely related (96 % DNA sequence identity) environmental myoviruses vB_KpnM_KP15 (KP15) and vB_KpnM_KP27 (KP27) infecting multidrug-resistant Klebsiella pneumoniae and Klebsiella oxytoca strains. Their genome organisation and evolutionary relationship are compared to Enterobacter phage phiEap-3 and Klebsiella phages Matisse and Miro. Due to the shared and distinct evolutionary history of these phages, we propose to create a new phage genus "Kp15virus" within the Tevenvirinae subfamily. In silico genome analysis reveals two unique putative homing endonucleases of KP27 phage, probably involved in unrevealed mechanism of DNA modification and resistance to restriction digestion, resulting in a broader host spectrum. Additionally, we identified in KP15 and KP27 a complete set of lysis genes, containing holin, antiholin, spanin and endolysin. By turbidimetric assays on permeabilized Gram-negative strains, we verified the ability of the KP27 endolysin to destroy the bacterial peptidoglycan. We confirmed high stability, absence of toxicity on a human epithelial cell line and the enzymatic specificity of endolysin, which was found to possess endopeptidase activity, cleaving the peptide stem between L-alanine and D-glutamic acid.
Assuntos
Bacteriófagos/enzimologia , Bacteriófagos/isolamento & purificação , DNA Viral/química , Endopeptidases/metabolismo , Klebsiella oxytoca/virologia , Klebsiella pneumoniae/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , DNA Viral/genética , Ordem dos Genes , Myoviridae/classificação , Myoviridae/enzimologia , Myoviridae/genética , Myoviridae/isolamento & purificação , Filogenia , Homologia de SequênciaRESUMO
Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.
Assuntos
Parede Celular/metabolismo , Biologia Computacional , Drosophila melanogaster/imunologia , Imunidade Inata/efeitos dos fármacos , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Alphaproteobacteria/química , Alphaproteobacteria/citologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Endopeptidases/metabolismoRESUMO
Broad-spectrum amino-acid racemases (Bsrs) enable bacteria to generate noncanonical D-amino acids, the roles of which in microbial physiology, including the modulation of cell-wall structure and the dissolution of biofilms, are just beginning to be appreciated. Here, extensive crystallographic, mutational, biochemical and bioinformatic studies were used to define the molecular features of the racemase BsrV that enable this enzyme to accommodate more diverse substrates than the related PLP-dependent alanine racemases. Conserved residues were identified that distinguish BsrV and a newly defined family of broad-spectrum racemases from alanine racemases, and these residues were found to be key mediators of the multispecificity of BrsV. Finally, the structural analysis of an additional Bsr that was identified in the bioinformatic analysis confirmed that the distinguishing features of BrsV are conserved among Bsr family members.
Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Vibrio cholerae/enzimologia , Alanina Racemase/química , Alanina Racemase/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Especificidade por Substrato , Vibrio cholerae/químicaRESUMO
The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.
Assuntos
Peptidil Transferases , Peptidil Transferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Bactérias , Peptídeos/química , Polissacarídeos , Peptidoglicano/químicaRESUMO
The current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture is usually performed by trained staff at health care centers. Long travel distances may introduce a bias of testing towards relatively large communities with close access to health care centers. Rural regions may thus be overlooked. Here, we demonstrate a sensitive method to measure antibodies to the S-protein of SARS-CoV-2. We adapted and optimized this assay for clinical use together with capillary blood sampling to meet the geographical challenges of serosurveillance. Finally, we tested remote at-home capillary blood sampling together with centralized assessment of S-specific IgG in a rural region of northern Scandinavia that encompasses 55,185 sq kilometers. We conclude that serological assessment from capillary blood sampling gives comparable results as analysis of venous blood. Importantly, at-home sampling enabled citizens living in remote rural areas access to centralized and sensitive laboratory antibody tests.
RESUMO
Broad-spectrum amino acid racemases (Bsrs) enable bacteria to generate non-canonical D-amino acids (NCDAAs), whose roles and impact on microbial physiology, including modulation of cell wall structure and dissolution of biofilms, are just beginning to be appreciated. Here we used a diverse array of structural, biochemical and molecular simulation studies to define and characterize how BsrV is post-translationally regulated. We discovered that contrary to Vibrio cholerae alanine racemase AlrV highly compacted active site, BsrV's is broader and can be occupied by cell wall stem peptides. We found that peptidoglycan peptides modified with NCDAAs are better stabilized by BsrV's catalytic cavity and show better inhibitory capacity than canonical muropeptides. Notably, BsrV binding and inhibition can be recapitulated by undigested peptidoglycan sacculi as it exists in the cell. Docking simulations of BsrV binding the peptidoglycan polymer generate a model where the peptide stems are perfectly accommodated and stabilized within each of the dimers active sites. Taking these biochemical and structural data together, we propose that inhibition of BsrV by peptidoglycan peptides underlies a negative regulatory mechanism to avoid excessive NCDAA production. Our results collectively open the door to use "à la carte" synthetic peptides as a tool to modulate DAAs production of Bsr enzymes.
RESUMO
Transpeptidation reinforces the structure of cell-wall peptidoglycan, an extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical success of transpeptidase-inhibiting ß-lactam antibiotics illustrates the essentiality of these cross-linkages for cell-wall integrity, but the presence of multiple, seemingly redundant transpeptidases in many species makes it challenging to determine cross-link function. Here, we present a technique to link peptide strands by chemical rather than enzymatic reaction. We employ biocompatible click chemistry to induce triazole formation between azido- and alkynyl-d-alanine residues that are metabolically installed in the peptidoglycan of Gram-positive or Gram-negative bacteria. Synthetic triazole cross-links can be visualized using azidocoumarin-d-alanine, an amino acid derivative that undergoes fluorescent enhancement upon reaction with terminal alkynes. Cell-wall stapling protects Escherichia coli from treatment with the broad-spectrum ß-lactams ampicillin and carbenicillin. Chemical control of cell-wall structure in live bacteria can provide functional insights that are orthogonal to those obtained by genetics.
Assuntos
Bactérias/química , Parede Celular/química , Reagentes de Ligações Cruzadas/química , Peptídeos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Parede Celular/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Humanos , beta-Lactamas/farmacologiaRESUMO
Peptidoglycan (PG) is essential in most bacteria. Thus, it is often targeted by various assaults, including interbacterial attacks via the type VI secretion system (T6SS). Here, we report that the Gram-negative bacterium Acinetobacter baumannii strain ATCC 17978 produces, secretes, and incorporates the noncanonical d-amino acid d-lysine into its PG during stationary phase. We show that PG editing increases the competitiveness of A. baumannii during bacterial warfare by providing immunity against peptidoglycan-targeting T6SS effectors from various bacterial competitors. In contrast, we found that d-Lys production is detrimental to pathogenesis due, at least in part, to the activity of the human enzyme d-amino acid oxidase (DAO), which degrades d-Lys producing H2O2 toxic to bacteria. Phylogenetic analyses indicate that the last common ancestor of A. baumannii had the ability to produce d-Lys. However, this trait was independently lost multiple times, likely reflecting the evolution of A. baumannii as a human pathogen.
Assuntos
Acinetobacter baumannii , Guerra Biológica , Acinetobacter baumannii/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peptidoglicano/metabolismo , FilogeniaRESUMO
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
RESUMO
Bacteria cells are protected from osmotic and environmental stresses by an exoskeleton-like polymeric structure called peptidoglycan (PG) or murein sacculus. This structure is fundamental for bacteria's viability and thus, the mechanisms underlying cell wall assembly and how it is modulated serve as targets for many of our most successful antibiotics. Therefore, it is now more important than ever to understand the genetics and structural chemistry of the bacterial cell walls in order to find new and effective methods of blocking it for the treatment of disease. In the last decades, liquid chromatography and mass spectrometry have been demonstrated to provide the required resolution and sensitivity to characterize the fine chemical structure of PG. However, the large volume of data sets that can be produced by these instruments today are difficult to handle without a proper data analysis workflow. Here, we present PG-metrics, a chemometric based pipeline that allows fast and easy classification of bacteria according to their muropeptide chromatographic profiles and identification of the subjacent PG chemical variability between e.g. bacterial species, growth conditions and, mutant libraries. The pipeline is successfully validated here using PG samples from different bacterial species and mutants in cell wall proteins. The obtained results clearly demonstrated that PG-metrics pipeline is a valuable bioanalytical tool that can lead us to cell wall classification and biomarker discovery.
Assuntos
Parede Celular/química , Cromatografia Líquida/estatística & dados numéricos , Espectrometria de Massas/estatística & dados numéricos , Peptidoglicano/química , Algoritmos , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Pressão Osmótica/efeitos dos fármacos , Peptidoglicano/classificação , Peptidoglicano/isolamento & purificação , Análise de Componente Principal , Receptores de Reconhecimento de PadrãoRESUMO
Endolysins are peptidoglycan-degrading enzymes utilized by bacteriophages to release the progeny from bacterial cells. The lytic properties of phage endolysins make them potential antibacterial agents for medical and industrial applications. Here, we present a comprehensive characterization of phage AP3 modular endolysin (AP3gp15) containing cell wall binding domain and an enzymatic domain (DUF3380 by BLASTP), both widespread and conservative. Our structural analysis demonstrates the low similarity of an enzymatic domain to known lysozymes and an unusual catalytic centre characterized by only a single glutamic acid residue and no aspartic acid. Thus, our findings suggest distinguishing a novel class of muralytic enzymes having the activity and catalytic centre organization of DUF3380. The lack of amino acid sequence homology between AP3gp15 and other known muralytic enzymes may reflect the evolutionary convergence of analogous glycosidases. Moreover, the broad antibacterial spectrum, lack of cytotoxic effect on human cells and the stability characteristics of AP3 endolysin advocate for its future application development.
Assuntos
Bacteriófagos/enzimologia , Burkholderia/virologia , Endopeptidases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Linhagem Celular Tumoral , Simulação por Computador , Endopeptidases/química , Endopeptidases/genética , Escherichia coli , Humanos , Modelos Moleculares , Muramidase/metabolismo , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection.
Assuntos
Alquil e Aril Transferases/metabolismo , Isomerases de Aminoácido/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Imidazóis/metabolismo , Oxirredutases/metabolismo , Staphylococcus aureus/enzimologia , Alquil e Aril Transferases/genética , Isomerases de Aminoácido/genética , Ácido Azetidinocarboxílico/metabolismo , Vias Biossintéticas , Cobalto/metabolismo , Cobre/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina/química , Metaboloma , Níquel/metabolismo , Óperon , Oxirredutases/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Zinco/metabolismoRESUMO
Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria.
Assuntos
Parede Celular/metabolismo , Peptidoglicano/metabolismo , Planctomycetales/citologia , Planctomycetales/fisiologia , Compostos de Amônio/metabolismo , Anaerobiose , Parede Celular/química , Oxirredução , Peptidoglicano/química , Planctomycetales/classificaçãoRESUMO
Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.
Assuntos
Actinas/metabolismo , Divisão Celular , Listeria monocytogenes/citologia , Polimerização , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular , Retroalimentação Fisiológica , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Macrófagos/metabolismo , Macrófagos/microbiologia , CamundongosRESUMO
The peptidoglycan (PG) cell wall constitutes the main defense barrier of bacteria against environmental insults and acts as communication interface. The biochemistry of this macromolecule has been well characterized throughout the years but recent discoveries have unveiled its chemical plasticity under environmental stresses. Non-canonical D-amino acids (NCDAA) are produced and released to the extracellular media by diverse bacteria. Such molecules govern cell wall adaptation to challenging environments through their incorporation into the polymer, a widespread capability among bacteria that reveals the inherent catalytic plasticity of the enzymes involved in the cell wall metabolism. Here, we analyze the recent structural and biochemical characterization of Bsr, a new family of broad spectrum racemases able to generate a wide range of NCDAA. We also discuss the necessity of a coordinated action of PG multispecific enzymes to generate adequate levels of modification in the murein sacculus. Finally, we also highlight how this catalytic plasticity of NCDAA-incorporating enzymes has allowed the development of new revolutionary methodologies for the study of PG modes of growth and in vivo dynamics.