Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2301366120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549257

RESUMO

A wide range of macromolecules can undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed reversibly, and carry out essential functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases. Despite the importance of this liquid-to-solid transition of proteins, the mechanism by which it is initiated in normally functional condensates is unknown. Here we show, by measuring the changes in structure, dynamics, and mechanics in time and space, that single-component FUS condensates do not uniformly convert to a solid gel, but rather that liquid and gel phases coexist simultaneously within the same condensate, resulting in highly inhomogeneous structures. Furthermore, our results show that this transition originates at the interface between the condensate and the dilute continuous phase, and once initiated, the gelation process propagates toward the center of the condensate. To probe such spatially inhomogeneous rheology during condensate aging, we use a combination of established micropipette aspiration experiments together with two optical techniques, spatial dynamic mapping and reflective confocal dynamic speckle microscopy. These results reveal the importance of the spatiotemporal dimension of the liquid-to-solid transition and highlight the interface of biomolecular condensates as a critical element in driving pathological protein aggregation.


Assuntos
Condensados Biomoleculares , Agregação Patológica de Proteínas , Humanos , Microscopia Confocal , Reologia , Proteína FUS de Ligação a RNA
2.
Proc Natl Acad Sci U S A ; 119(26): e2119800119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727989

RESUMO

Phase-separated biomolecular condensates that contain multiple coexisting phases are widespread in vitro and in cells. Multiphase condensates emerge readily within multicomponent mixtures of biomolecules (e.g., proteins and nucleic acids) when the different components present sufficient physicochemical diversity (e.g., in intermolecular forces, structure, and chemical composition) to sustain separate coexisting phases. Because such diversity is highly coupled to the solution conditions (e.g., temperature, pH, salt, composition), it can manifest itself immediately from the nucleation and growth stages of condensate formation, develop spontaneously due to external stimuli or emerge progressively as the condensates age. Here, we investigate thermodynamic factors that can explain the progressive intrinsic transformation of single-component condensates into multiphase architectures during the nonequilibrium process of aging. We develop a multiscale model that integrates atomistic simulations of proteins, sequence-dependent coarse-grained simulations of condensates, and a minimal model of dynamically aging condensates with nonconservative intermolecular forces. Our nonequilibrium simulations of condensate aging predict that single-component condensates that are initially homogeneous and liquid like can transform into gel-core/liquid-shell or liquid-core/gel-shell multiphase condensates as they age due to gradual and irreversible enhancement of interprotein interactions. The type of multiphase architecture is determined by the aging mechanism, the molecular organization of the gel and liquid phases, and the chemical makeup of the protein. Notably, we predict that interprotein disorder to order transitions within the prion-like domains of intracellular proteins can lead to the required nonconservative enhancement of intermolecular interactions. Our study, therefore, predicts a potential mechanism by which the nonequilibrium process of aging results in single-component multiphase condensates.


Assuntos
Envelhecimento , Condensados Biomoleculares , Proteína FUS de Ligação a RNA , Envelhecimento/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Termodinâmica
3.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748001

RESUMO

In this work, we introduce variational umbrella seeding, a novel technique for computing nucleation barriers. This new method, a refinement of the original seeding approach, is far less sensitive to the choice of order parameter for measuring the size of a nucleus. Consequently, it surpasses seeding in accuracy and umbrella sampling in computational speed. We test the method extensively and demonstrate excellent accuracy for crystal nucleation of nearly hard spheres and two distinct models of water: mW and TIP4P/ICE. This method can easily be extended to calculate nucleation barriers for homogeneous melting, condensation, and cavitation.

4.
Biophys J ; 122(14): 2973-2987, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36883003

RESUMO

Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.


Assuntos
Condensados Biomoleculares , Simulação de Dinâmica Molecular , Termodinâmica , Temperatura , RNA
5.
Chembiochem ; 24(1): e202200450, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336658

RESUMO

The protein high mobility group A1 (HMGA1) is an important regulator of chromatin organization and function. However, the mechanisms by which it exerts its biological function are not fully understood. Here, we report that the HMGA isoform, HMGA1a, nucleates into foci that display liquid-like properties in the nucleus, and that the protein readily undergoes phase separation to form liquid condensates in vitro. By bringing together machine-leaning modelling, cellular and biophysical experiments and multiscale simulations, we demonstrate that phase separation of HMGA1a is promoted by protein-DNA interactions, and has the potential to be modulated by post-transcriptional effects such as phosphorylation. We further show that the intrinsically disordered C-terminal tail of HMGA1a significantly contributes to its phase separation through electrostatic interactions via AT hooks 2 and 3. Our work sheds light on HMGA1 phase separation as an emergent biophysical factor in regulating chromatin structure.


Assuntos
Cromatina , Proteína HMGA1a , Cromatina/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/química , Proteína HMGA1a/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , Fosforilação
6.
Phys Rev Lett ; 130(11): 118001, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001068

RESUMO

Salty water is the most abundant electrolyte aqueous mixture on Earth, however, very little is known about the NaCl-saturated solution interfacial free energy (γ_{s}). Here, we provide the first direct estimation of γ_{s} for several NaCl crystallographic planes by means of the mold integration technique, a highly efficient computational method to evaluate interfacial free energies with anisotropic crystal resolution. Making use of the JC-SPC/E model, one of the most benchmarked force fields for NaCl water solutions, we measure γ_{s} of four different crystal planes, (100), (110), (111), and (112[over ¯]) with the saturated solution at normal conditions. We find high anisotropy between the different crystal orientations with values ranging from 100 to 150 mJ m^{-2}, and the average value of the distinct planes being γ[over ¯]_{s}=137(20) mJ m^{-2}. This value for the coexistence interfacial free energy is in reasonable agreement with previous extrapolations from nucleation studies. Our Letter represents a milestone in the computational calculation of interfacial free energies between ionic crystals and aqueous solutions.

7.
PLoS Comput Biol ; 18(2): e1009810, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108264

RESUMO

Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.


Assuntos
Condensados Biomoleculares , RNA , Fenômenos Biofísicos , RNA/química , Proteínas de Ligação a RNA
8.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37158636

RESUMO

Computational studies of liquid water and its phase transition into vapor have traditionally been performed using classical water models. Here, we utilize the Deep Potential methodology-a machine learning approach-to study this ubiquitous phase transition, starting from the phase diagram in the liquid-vapor coexistence regime. The machine learning model is trained on ab initio energies and forces based on the SCAN density functional, which has been previously shown to reproduce solid phases and other properties of water. Here, we compute the surface tension, saturation pressure, and enthalpy of vaporization for a range of temperatures spanning from 300 to 600 K and evaluate the Deep Potential model performance against experimental results and the semiempirical TIP4P/2005 classical model. Moreover, by employing the seeding technique, we evaluate the free energy barrier and nucleation rate at negative pressures for the isotherm of 296.4 K. We find that the nucleation rates obtained from the Deep Potential model deviate from those computed for the TIP4P/2005 water model due to an underestimation in the surface tension from the Deep Potential model. From analysis of the seeding simulations, we also evaluate the Tolman length for the Deep Potential water model, which is (0.091 ± 0.008) nm at 296.4 K. Finally, we identify that water molecules display a preferential orientation in the liquid-vapor interface, in which H atoms tend to point toward the vapor phase to maximize the enthalpic gain of interfacial molecules. We find that this behavior is more pronounced for planar interfaces than for the curved interfaces in bubbles. This work represents the first application of Deep Potential models to the study of liquid-vapor coexistence and water cavitation.

9.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37226991

RESUMO

One of the most accepted hypothesis to explain the anomalous behavior of water is the presence of a critical point between two liquids, the liquid-liquid critical point (LLCP), buried within the deep supercooled regime. Unfortunately, such hypothesis is hard to be experimentally confirmed due to fast freezing. Here, we show that the TIP4P/Ice water potential shifted by 400 bar can reproduce with unprecedented accuracy the experimental isothermal compressibility of water and its liquid equation of state for a wide pressure and temperature range. We find, both by extrapolation of response function maxima and by a Maxwell construction, that the location of the model LLCP is consistent with previous calculations. According to the pressure shift needed to recover the experimental behavior of supercooled water, we estimate the experimental LLCP to be located around 1250 bar and 195 K. We use the model to estimate the ice nucleation rate (J) in the vicinity of the hypothesized LLCP experimental location and obtain J = 1024 m-3 s-1. Thereby, experiments where the ratio between the cooling rate and the sample volume is equal or larger than the estimated nucleation rate could probe liquid-liquid equilibrium before freezing. Such conditions are not accessible in common experiments with microdroplets cooled at a few kelvin per second, but they could be, for instance, using nanodroplets of around 50 nm radius observed in a millisecond timescale.

10.
Proc Natl Acad Sci U S A ; 117(24): 13238-13247, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482873

RESUMO

One of the key mechanisms used by cells to control the spatiotemporal organization of their many components is the formation and dissolution of biomolecular condensates through liquid-liquid phase separation (LLPS). Using a minimal coarse-grained model that allows us to simulate thousands of interacting multivalent proteins, we investigate the physical parameters dictating the stability and composition of multicomponent biomolecular condensates. We demonstrate that the molecular connectivity of the condensed-liquid network-i.e., the number of weak attractive protein-protein interactions per unit of volume-determines the stability (e.g., in temperature, pH, salt concentration) of multicomponent condensates, where stability is positively correlated with connectivity. While the connectivity of scaffolds (biomolecules essential for LLPS) dominates the phase landscape, introduction of clients (species recruited via scaffold-client interactions) fine-tunes it by transforming the scaffold-scaffold bond network. Whereas low-valency clients that compete for scaffold-scaffold binding sites decrease connectivity and stability, those that bind to alternate scaffold sites not required for LLPS or that have higher-than-scaffold valencies form additional scaffold-client-scaffold bridges increasing stability. Proteins that establish more connections (via increased valencies, promiscuous binding, and topologies that enable multivalent interactions) support the stability of and are enriched within multicomponent condensates. Importantly, proteins that increase the connectivity of multicomponent condensates have higher critical points as pure systems or, if pure LLPS is unfeasible, as binary scaffold-client mixtures. Hence, critical points of accessible systems (i.e., with just a few components) might serve as a unified thermodynamic parameter to predict the composition of multicomponent condensates.

11.
Nano Lett ; 22(2): 612-621, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35001622

RESUMO

Liquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.


Assuntos
Condensados Biomoleculares , Proteínas , Emulsões , Proteínas/química , RNA/química , Eletricidade Estática
12.
J Chem Phys ; 157(13): 134501, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209006

RESUMO

Colloidal systems possess unique features to investigate the governing principles behind liquid-to-solid transitions. The phase diagram and crystallization landscape of colloidal particles can be finely tuned by the range, number, and angular distribution of attractive interactions between the constituent particles. In this work, we present a computational study of colloidal patchy particles with high-symmetry bonding-six patches displaying octahedral symmetry-that can crystallize into distinct competing ordered phases: a cubic simple (CS) lattice, a body-centered cubic phase, and two face-centered cubic solids (orientationally ordered and disordered). We investigate the underlying mechanisms by which these competing crystals emerge from a disordered fluid at different pressures. Strikingly, we identify instances where the structure of the crystalline embryo corresponds to the stable solid, while in others, it corresponds to a metastable crystal whose nucleation is enabled by its lower interfacial free energy with the liquid. Moreover, we find the exceptional phenomenon that, due to a subtle balance between volumetric enthalpy and interfacial free energy, the CS phase nucleates via crystalline cubic nuclei rather than through spherical clusters, as the majority of crystal solids in nature. Finally, by examining growth beyond the nucleation stage, we uncover a series of alternating one-phase and two-phase crystallization mechanisms depending on whether or not the same phase that nucleates keeps growing. Taken together, we show that an octahedral distribution of attractive sites in colloidal particles results in an extremely rich crystallization landscape where subtle differences in pressure crucially determine the crystallizing polymorph.

13.
J Chem Phys ; 157(9): 094503, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075712

RESUMO

Freezing of water is the most common liquid-to-crystal phase transition on Earth; however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240 K. We employ two different water models: mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic nonpolarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih and Ic and a stacking mixture of ice Ih/Ic, reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates obtained by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner that contributes to benchmarking the freezing behavior of two popular water models.

14.
Biophys J ; 120(23): 5169-5186, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34762868

RESUMO

One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.


Assuntos
Proteínas de Ligação a RNA , RNA , Condensados Biomoleculares , Difusão , Domínios Proteicos , Motivo de Reconhecimento de RNA , Tensão Superficial
15.
Biophys J ; 120(7): 1219-1230, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33571491

RESUMO

Intracellular liquid-liquid phase separation enables the formation of biomolecular condensates, such as ribonucleoprotein granules, which play a crucial role in the spatiotemporal organization of biomolecules (e.g., proteins and RNAs). Here, we introduce a patchy-particle polymer model to investigate liquid-liquid phase separation of protein-RNA mixtures. We demonstrate that at low to moderate concentrations, RNA enhances the stability of RNA-binding protein condensates because it increases the molecular connectivity of the condensed-liquid phase. Importantly, we find that RNA can also accelerate the nucleation stage of phase separation. Additionally, we assess how the capacity of RNA to increase the stability of condensates is modulated by the relative protein-protein/protein-RNA binding strengths. We find that phase separation and multiphase organization of multicomponent condensates is favored when the RNA binds with higher affinity to the lower-valency proteins in the mixture than to the cognate higher-valency proteins. Collectively, our results shed light on the roles of RNA in ribonucleoprotein granule formation and the internal structuring of stress granules.


Assuntos
Organelas , RNA , Cinética , Proteínas de Ligação a RNA , Termodinâmica
16.
Soft Matter ; 17(3): 489-505, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346291

RESUMO

Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.

17.
Phys Chem Chem Phys ; 23(35): 19611-19626, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524277

RESUMO

Hard-sphere crystallization has been widely investigated over the last six decades by means of colloidal suspensions and numerical methods. However, some aspects of its nucleation behaviour are still under debate. Here, we provide a detailed computational characterisation of the polymorphic nucleation competition between the face-centered cubic (fcc) and the hexagonal-close packed (hcp) hard-sphere crystal phases. By means of several state-of-the-art simulation techniques, we evaluate the melting pressure, chemical potential difference, interfacial free energy and nucleation rate of these two polymorphs, as well as of a random stacking mixture of both crystals. Our results highlight that, despite the fact that both polymorphs have very similar stability, the interfacial free energy of the hcp phase could be marginally higher than that of the fcc solid, which in consequence, mildly decreases its propensity to nucleate from the liquid compared to the fcc phase. Moreover, we analyse the abundance of each polymorph in grown crystals from different types of inserted nuclei: fcc, hcp and stacking disordered fcc/hcp seeds, as well as from those spontaneously emerged from brute force simulations. We find that post-critical crystals fundamentally grow maintaining the polymorphic structure of the critical nucleus, at least until moderately large sizes, since the only crystallographic orientation that allows stacking close-packed disorder is the fcc (111) plane, or equivalently the hcp (0001) one. Taken together, our results contribute with one more piece to the intricate puzzle of colloidal hard-sphere crystallization.

18.
J Chem Phys ; 155(12): 125103, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598583

RESUMO

Multivalent proteins and nucleic acids can self-assemble into biomolecular condensates that contribute to compartmentalize the cell interior. Computer simulations offer a unique view to elucidate the mechanisms and key intermolecular interactions behind the dynamic formation and dissolution of these condensates. In this work, we present a novel approach to include explicit water and salt in sequence-dependent coarse-grained (CG) models for proteins and RNA, enabling the study of biomolecular condensate formation in a salt-dependent manner. Our framework combines a reparameterized version of the HPS protein force field with the monoatomic mW water model and the mW-ion potential for NaCl. We show how our CG model qualitatively captures the experimental radius of the gyration trend of a subset of intrinsically disordered proteins and reproduces the experimental protein concentration and water percentage of the human fused in sarcoma (FUS) low-complexity-domain droplets at physiological salt concentration. Moreover, we perform seeding simulations as a function of salt concentration for two antagonist systems: the engineered peptide PR25 and poly-uridine/poly-arginine mixtures, finding good agreement with their reported in vitro phase behavior with salt concentration in both cases. Taken together, our work represents a step forward towards extending sequence-dependent CG models to include water and salt, and to consider their key role in biomolecular condensate self-assembly.


Assuntos
Condensados Biomoleculares/química , Condensados Biomoleculares/efeitos dos fármacos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Água/química , Humanos , Íons/química
19.
J Chem Phys ; 153(9): 091102, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32891082

RESUMO

Antifreeze proteins (AFPs) are biopolymers capable of interfering with ice growth. Their antifreeze action is commonly understood considering that the AFPs, by pinning the ice surface, force the crystal-liquid interface to bend forming an ice meniscus, causing an increase in the surface free energy and resulting in a decrease in the freezing point ΔTmax. Here, we present an extensive computational study for a model protein adsorbed on a TIP4P/Ice crystal, computing ΔTmax as a function of the average distance d between AFPs, with simulations spanning over 1 µs. First, we show that the lower the d, the larger the ΔTmax. Then, we find that the water-ice-protein contact angle along the line ΔTmax(d) is always larger than 0°, and we provide a theoretical interpretation. We compute the curvature radius of the stable solid-liquid interface at a given supercooling ΔT ≤ ΔTmax, connecting it with the critical ice nucleus at ΔT. Finally, we discuss the antifreeze capability of AFPs in terms of the protein-water and protein-ice interactions. Our findings establish a unified description of the AFPs in the contest of homogeneous ice nucleation, elucidating key aspects of the antifreeze mechanisms and paving the way for the design of novel ice-controlling materials.


Assuntos
Proteínas Anticongelantes/química , Gelo , Adsorção , Cristalização , Propriedades de Superfície , Termodinâmica , Temperatura de Transição
20.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076213

RESUMO

Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid-liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid-liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein-protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein-protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid-liquid phase behaviour.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Extração Líquido-Líquido/métodos , Conformação Proteica , Sítios de Ligação/genética , Fenômenos Bioquímicos/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Transição de Fase , Domínios Proteicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA