Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(11): 6317-6335, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021262

RESUMO

Adult hippocampal neurogenesis has been implicated in a number of disorders where reward processing is disrupted but whether new neurons regulate specific aspects of reward-related decision making remains unclear. Given the role of the hippocampus in future-oriented cognition, here we tested whether adult neurogenesis regulates preference for future, advantageous rewards in a delay discounting paradigm for rats. Indeed, blocking neurogenesis caused a profound aversion for delayed rewards, and biased choice behavior toward immediately available, but smaller, rewards. Consistent with a role for the ventral hippocampus in impulsive decision making and future-thinking, neurogenesis-deficient animals displayed reduced activity in the ventral hippocampus. In intact animals, delay-based decision making restructured dendrites and spines in adult-born neurons and specifically activated adult-born neurons in the ventral dentate gyrus, relative to dorsal activation in rats that chose between immediately-available rewards. Putative developmentally-born cells, located in the superficial granule cell layer, did not display task-specific activity. These findings identify a novel and specific role for neurogenesis in decisions about future rewards, thereby implicating newborn neurons in disorders where short-sighted gains are preferred at the expense of long-term health.


Assuntos
Giro Denteado , Neurogênese , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Ratos , Recompensa
2.
J Neurosci ; 40(30): 5740-5756, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571837

RESUMO

During immature stages, adult-born neurons pass through critical periods for survival and plasticity. It is generally assumed that by 2 months of age adult-born neurons are mature and equivalent to the broader neuronal population, raising questions of how they might contribute to hippocampal function in old age when neurogenesis has declined. However, few have examined adult-born neurons beyond the critical period or directly compared them to neurons born in infancy. Here, we used a retrovirus to visualize functionally relevant morphological features of 2- to 24-week-old adult-born neurons in male rats. From 2 to 7 weeks, neurons grew and attained a relatively mature phenotype. However, several features of 7-week-old neurons suggested a later wave of growth: these neurons had larger nuclei, thicker dendrites, and more dendritic filopodia than all other groups. Indeed, between 7 and 24 weeks, adult-born neurons gained additional dendritic branches, formed a second primary dendrite, acquired more mushroom spines, and had enlarged mossy fiber presynaptic terminals. Compared with neonatal-born neurons, old adult-born neurons had greater spine density, larger presynaptic terminals, and more putative efferent filopodial contacts onto inhibitory neurons. By integrating rates of cell birth and growth across the life span, we estimate that adult neurogenesis ultimately produces half of the cells and the majority of spines in the dentate gyrus. Critically, protracted development contributes to the plasticity of the hippocampus through to the end of life, even after cell production declines. Persistent differences from neonatal-born neurons may additionally endow adult-born neurons with unique functions even after they have matured.SIGNIFICANCE STATEMENT Neurogenesis occurs in the hippocampus throughout adult life and contributes to memory and emotion. It is generally assumed that new neurons have the greatest impact on behavior when they are immature and plastic. However, since neurogenesis declines dramatically with age, it is unclear how they might contribute to behavior later in life when cell proliferation has slowed. Here we find that newborn neurons mature over many months in rats and may end up with distinct morphological features compared with neurons born in infancy. Using a mathematical model, we estimate that a large fraction of neurons is added in adulthood. Moreover, their extended growth produces a reserve of plasticity that persists even after neurogenesis has declined to low rates.


Assuntos
Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Long-Evans
3.
J Mol Biol ; 435(10): 168069, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003471

RESUMO

The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population < 25%). We speculate that the N-terminal helices (A5 to Q20 and S25 to V36) which constitute the N-terminus of SN1 act as a nucleation site for initiating SNARE zippering.


Assuntos
Fusão de Membrana , Neurônios , Proteínas SNARE , Neurônios/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Proteínas SNARE/metabolismo , Difração de Raios X , Humanos
4.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35473765

RESUMO

Adult neurogenesis modifies hippocampal circuits and behavior, but removing newborn neurons does not consistently alter spatial processing, a core function of the hippocampus. Additionally, little is known about sex differences in neurogenesis since few studies have compared males and females. Since adult-born neurons regulate the stress response, we hypothesized that spatial functions may be more prominent under aversive conditions and may differ between males and females given sex differences in stress responding. We therefore trained intact and neurogenesis-deficient rats in the spatial water maze at temperatures that vary in their degree of aversiveness. In the standard water maze, ablating neurogenesis did not alter spatial learning in either sex. However, in cold water, ablating neurogenesis had divergent sex-dependent effects: relative to intact rats, male neurogenesis-deficient rats were slower to escape the maze and female neurogenesis-deficient rats were faster. Neurogenesis promoted temperature-related changes in search strategy in females, but it promoted search strategy stability in males. Females displayed greater recruitment (Fos expression) of the dorsal hippocampus than males, particularly in cold water. However, blocking neurogenesis did not alter Fos expression in either sex. Finally, morphologic analyses revealed greater experience-dependent plasticity in males. Adult-born neurons in males and females had similar morphology at baseline but training increased spine density and reduced presynaptic terminal size, specifically in males. Collectively, these findings indicate that adult-born neurons contribute to spatial learning in stressful conditions and they provide new evidence for sex differences in their behavioral functions.


Assuntos
Neurogênese , Caracteres Sexuais , Animais , Feminino , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Ratos , Aprendizagem Espacial
5.
Behav Neurosci ; 134(4): 283-295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32378907

RESUMO

Rewards are often unreliable and optimal choice requires behavioral flexibility and learning about the probabilistic nature of uncertain rewards. Probabilistic learning occurs over multiple trials, often without conscious knowledge, and is traditionally associated with striatal function. While the hippocampus is classically recognized for its role in memory for individual experiences, recent work indicates that it is also involved in probabilistic forms of learning but little is known about the features that support such learning. We hypothesized that adult neurogenesis may be involved, because adult-born neurons contribute to both learning and reward-related behaviors. To test this, we used an appetitive probabilistic reversal learning task where a correct lever is rewarded with 80% probability and an incorrect lever is rewarded with 20% probability. Behavioral flexibility was assessed by switching correct-incorrect lever identities after 8 consecutive correct choices. Transgenic male rats that lacked adult neurogenesis displayed an initial deficit in discriminating the correct and incorrect levers, but they were not impaired at reversing behavior when the reward contingencies switched. When reward was withheld after a correct lever choice, neurogenesis-deficient rats were more likely to choose the incorrect lever on the subsequent trial. Also, rats with intact neurogenesis were more sensitive to reward at the incorrect lever. Differences were not observed in control transgenic rats that had intact neurogenesis. These results identify a novel role for neurogenesis in learning about uncertain, probabilistic rewards. Altered sensitivity to reward and negative feedback furthermore implicates neurogenesis in cognitive phenotypes associated with mood disorders such as depression. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Assuntos
Aprendizagem/fisiologia , Neurogênese/fisiologia , Animais , Condicionamento Operante/fisiologia , Corpo Estriado/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Neurônios/fisiologia , Aprendizagem por Probabilidade , Ratos , Ratos Long-Evans , Ratos Transgênicos , Reversão de Aprendizagem/fisiologia , Recompensa , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA