Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cell ; 184(17): 4564-4578.e18, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34302739

RESUMO

The mesencephalic locomotor region (MLR) is a key midbrain center with roles in locomotion. Despite extensive studies and clinical trials aimed at therapy-resistant Parkinson's disease (PD), debate on its function remains. Here, we reveal the existence of functionally diverse neuronal populations with distinct roles in control of body movements. We identify two spatially intermingled glutamatergic populations separable by axonal projections, mouse genetics, neuronal activity profiles, and motor functions. Most spinally projecting MLR neurons encoded the full-body behavior rearing. Loss- and gain-of-function optogenetic perturbation experiments establish a function for these neurons in controlling body extension. In contrast, Rbp4-transgene-positive MLR neurons project in an ascending direction to basal ganglia, preferentially encode the forelimb behaviors handling and grooming, and exhibit a role in modulating movement. Thus, the MLR contains glutamatergic neuronal subpopulations stratified by projection target exhibiting roles in action control not restricted to locomotion.


Assuntos
Locomoção/fisiologia , Mesencéfalo/anatomia & histologia , Animais , Gânglios da Base/metabolismo , Comportamento Animal , Feminino , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Optogenética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Medula Espinal/metabolismo , Transgenes , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Curr Neuropharmacol ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559244

RESUMO

Although classically considered a relay station for basal ganglia (BG) output, the anatomy, connectivity, and function of the mesencephalic locomotor region (MLR) were redefined during the last two decades. In striking opposition to what was initially thought, MLR and BG are actually recip- rocally and intimately interconnected. New viral-based, optogenetic, and mapping technologies re- vealed that cholinergic, glutamatergic, and GABAergic neurons coexist in this structure, which, in ad- dition to extending descending projections, send long-range ascending fibers to the BG. These MLR projections to the BG convey motor and non-motor information to specific synaptic targets throughout different nuclei. Moreover, MLR efferent fibers originate from precise neuronal subpopulations locat- ed in particular MLR subregions, defining independent anatomo-functional subcircuits involved in particular aspects of animal behavior such as fast locomotion, explorative locomotion, posture, fore- limb-related movements, speed, reinforcement, among others. In this review, we revised the literature produced during the last decade linking MLR and BG. We conclude that the classic framework con- sidering the MLR as a homogeneous output structure passively receiving input from the BG needs to be revisited. We propose instead that the multiple subcircuits embedded in this region should be taken as independent entities that convey relevant and specific ascending information to the BG and, thus, actively participate in the execution and tuning of behavior.

3.
Front Hum Neurosci ; 15: 745689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858153

RESUMO

Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.

4.
Curr Biol ; 26(7): R291-3, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27046818

RESUMO

A recent study has functionally disentangled the hitherto enigmatic mesencephalic locomotor region of the brain on the basis of cell type diversity and identified differential upstream regulatory pathways.


Assuntos
Gânglios da Base/fisiologia , Mapeamento Encefálico , Mesencéfalo/citologia , Atividade Motora , Vias Neurais , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA