Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7165-7172, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451542

RESUMO

We report asymmetric potassium-isothiourea-boronate-catalyzed Wittig olefinations of 4-substituted cyclohexanones with non-stabilized phosphorus ylides to afford highly enantioenriched axially chiral alkenes. The optimal catalyst features an unusual macrocyclic amide-potassium-boronate chelate. Kinetic and spectroscopic analyses are consistent with a Lewis acid mechanism for the catalytic olefination that results in the formation of the oxaphosphetane adduct under cryogenic conditions. Thermal fragmentation of the oxaphosphetane to the alkene product occurs after the reaction is complete. Computational studies indicate that cycloaddition proceeds via a stepwise mechanism involving enantiodetermining polar 1,2-addition to afford an intermediate potassium betaine complex.

2.
J Am Chem Soc ; 143(19): 7480-7489, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33949855

RESUMO

Intramolecular alkoxylation of C-H bonds can rapidly introduce structural and functional group complexities into seemingly simple or inert precursors. The transformation is particularly important due to the ubiquitous presence of tetrahydrofuran (THF) motifs as fundamental building blocks in a wide range of pharmaceuticals, agrochemicals, and natural products. Despite the various synthetic methodologies known for generating functionalized THFs, most show limited functional group tolerance and lack demonstration for the preparation of spiro or fused bi- and tricyclic ether units prevalent in molecules for pharmacological purposes. Herein we report an intramolecular C-H alkoxylation to furnish oxacycles from easily prepared α-diazo-ß-ketoesters using commercially available iron acetylacetonate (Fe(acac)2) as a catalyst. The reaction is proposed to proceed through the formation of a vinylic carboradical arising from N2 extrusion, which mediates a proximal H-atom abstraction followed by a rapid C-O bond forming radical recombination step. The radical mechanism is probed using an isotopic labeling study (vinyl C-D incorporation), ring opening of a radical clock substrate, and Hammett analysis and is further corroborated by density functional theory (DFT) calculations. Heightened reactivity is observed for electron-rich C-H bonds (tertiary, ethereal), while greater catalyst loadings or elevated reaction temperatures are required to fully convert substrates with benzylic, secondary, and primary C-H bonds. The transformation is highly functional group tolerant and operates under mild reaction conditions to provide rapid access to complex structures such as spiro and fused bi-/tricyclic O-heterocycles from readily available precursors.


Assuntos
Compostos Heterocíclicos/síntese química , Hidroxibutiratos/química , Ferro/química , Pentanonas/química , Catálise , Compostos Heterocíclicos/química , Modelos Moleculares , Estrutura Molecular
3.
Science ; 374(6568): 752-757, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735250

RESUMO

A strategy that facilitates the construction of a wide variety of trisubstituted stereocenters through a catalytically accessed common chiral intermediate could prove highly enabling for the field of synthetic chemistry. We report the discovery of enantioselective, catalytic 1,2-boronate rearrangements for the synthesis of α-chloro pinacol boronic esters from readily available boronic esters and dichloromethane. The chiral building blocks produced in these reactions can undergo two sequential stereospecific elaborations to generate a wide assortment of trisubstituted stereocenters. The enantioselective reaction is catalyzed by a lithium-isothiourea-boronate complex, which is proposed to promote rearrangement through a dual­lithium-induced chloride abstraction orchestrated by Lewis basic functionality on the catalyst scaffold.


Assuntos
Ácidos Borônicos/química , Técnicas de Química Sintética , Catálise , Ésteres/química , Lítio/química , Estrutura Molecular , Estereoisomerismo , Tioureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA