Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(23): 15004-15012, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166114

RESUMO

The influence of temperature on the adsorption of metal ions at the solid-water interface is often overlooked, despite the important role that adsorption plays in metal-ion fate and transport in the natural environment where temperatures vary widely. Herein, we examine the temperature-dependent adsorption of uranium, a widespread radioactive contaminant, onto the ubiquitous iron oxide, hematite. The multitemperature batch adsorption data and surface complexation models indicate that the adsorption of uranium, as the hexavalent uranyl (UO22+) ion, increases significantly with increasing temperature, with an adsorption enthalpy (ΔHads) of +71 kJ mol-1. We suggest that this endothermic, entropically driven adsorption behavior is linked to reorganization of the uranyl-ion hydration and interfacial water structures upon UVI adsorption at the hematite surface. Overall, this work provides fundamental insight into the thermodynamics driving metal-ion adsorption reactions and provides the specific enthalpy value necessary for improved predictive geochemical modeling of UVI adsorption in the environment.


Assuntos
Urânio , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Termodinâmica
2.
J Am Chem Soc ; 139(49): 18003-18008, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148745

RESUMO

The influence of countercations (An+) in directing the composition of monomeric metal-ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of An+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A+ hydration enthalpies found for two related series of thorium (Th)-nitrate molecular compounds obtained by evaporating acidic aqueous Th-nitrate solutions in the presence of A+ counterions. Analyses of their chemical composition and solid-state structures demonstrate that A+ not only affects the overall solid-state packing of the Th-nitrato complexes but also influences the composition of the Th-nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A+ hydration enthalpies, such that the A+ with smaller hydration enthalpies associate with less hydrated and more anionic Th-nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of An+, opens a new avenue for the design and synthesis of targeted metal-ligand complexes.

3.
Phys Chem Chem Phys ; 19(32): 21304-21316, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28678296

RESUMO

X-ray and electrochemical studies of organic phases obtained by the extraction of tetravalent cerium, Ce(iv), from aqueous nitric acid (3 M) with tri-n-butyl phosphate (TBP) in n-dodecane reveal a tetranuclear Ce(iv) structural motif. This finding is consistent with the results of previous liquid-liquid extraction (LLE) studies that implicate the aggregation of (Ce-O-Ce)6+ dimers into multinuclear Ce(iv)·TBP solvates. The organic solution structures elaborated here for the Ce(iv)-HNO3-20% TBP-n-C12H26 system are correlated with multiscale phenomena-from the atomic level of the cerium coordination environment to the supramolecular scale of solute aggregates-in the organic phases, which are of relevance to the PUREX (Plutonium Uranium Reduction EXtraction) process. The combination of XANES, EXAFS, and SAXS results indicate the presence of tetranuclear cerium(iv)-oxo core structures in each of the organic phases investigated. In addition to the use of X-ray spectroscopy and scattering for direct metrical details about the organic phase solute speciation, three-phase-electrode differential pulse voltammetry (DPV) of the third phase reveals a wave attributable to Ce(iv) reduction. The electrode potential is consistent with values for the reduction of Ce(iv) in (Ce-O-Ce)6+ dimers in aqueous electrolytes. The Ce(iv) coordination chemistry of the organic solvates is independent of the bulk phenomenon of phase splitting, namely third phase formation. The local, molecular environment of Ce in the organic phase before splitting is identical to those in the two organic phases (the dense third phase and the light phase) after splitting. SAXS data are consistent with the formation of small spherical reverse micelles with core diameters (approx. 6 Å) that can accommodate a tetranuclear Ce(iv) oxo-cluster solvate of TBP. Sticky sphere modeling of the SAXS data for the organic phases with low cerium concentrations (<0.14 M) is consistent with the presence of randomly- and homogenously-dispersed micelles in combination with short-range percolated, associated micelles. At high cerium concentrations (approx. 1.5 M) in the third phase, the SAXS modeling is consistent with correlated, long-range percolated micellar aggregates. The presence of strong inter-micellar interactions (-3 to -5kBT) in all organic phases of the Ce(iv)-HNO3-TBP-n-C12H26 LLE system suggests that the phenomena of phase splitting and third phase inversion are due to liquid precipitation that is dependent solely on the concentration of the tetranuclear Ce solvate.

5.
Sci Total Environ ; 946: 174072, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897454

RESUMO

Communities neighboring monoculture plantations are vulnerable to different forms of pollution associated with agro-industrial operations. Herein, we examine the case of El Tiple, a rural Afro descendant community embedded within one of the largest sugarcane plantations in the Americas. We implemented a participatory approach to assess water pollution, exposure via water ingestion, and non-carcinogenic health risks associated with the use of local water sources available to the community. We conducted household surveys to unveil demographic characteristics and family dynamics linked to water consumption. Additionally, we measured water quality parameters and assessed the concentration glyphosate, its major metabolite (aminomethylphosphonic acid) and metals and metalloids. Drinking water El Tiple households is sourced from three primary sources: the local aqueduct system, water delivery trucks, and private deep wells. Tests on water samples from both the local aqueduct and delivery trucks showed no traces of pesticides, metals, or metalloids surpassing regulatory limits set by Colombian or EPA standards. However, we found concentration of contaminants of primary concern, including mercury (up to 0.0052 ppm) and lead (up to 0.0375 ppm) that exceed the permissible regulatory thresholds in water from groundwater wells. Residents of the peripheric subdivisions of El Tiple are four times more reliant on well water extraction than residents of the central area of the town due to lack of access to public drinking water and sanitation infrastructure. Finally, adult women and school-age children have a higher health risk associated with exposure to local pollutants than adult men due to their constant presence in the town. We conclude that expanding the coverage of clean water and sanitation infrastructure to include all households of the community would be the most recommended measure to minimize exposure and risk via ingestion of water pollutants.

6.
Sci Total Environ ; 922: 171262, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417525

RESUMO

Salt marshes are highly productive and valuable coastal ecosystems that act as filters for nutrients and pollutants at the land-sea interface. The salt marshes of the mid-Atlantic United States often exhibit geochemical behavior that varies significantly from other estuaries around the world, but our understanding of metal mobility and bioavailability remains incomplete for these systems. We sampled abiotic (water and sediment) and native biotic (three halophyte and two bivalve species) compartments of a southeastern United States salt marsh to understand the site- and species-specific metal concentrations, fractionation, and bioavailability for 16 metals and metalloids, including two naturally occurring radionuclides. Location on the marsh platform greatly influenced metal concentrations in sediment and metal bioaccumulation in halophytes, with sites above the mean high-water mark (i.e., high marsh zone) having lower concentrations in sediment but plants exhibiting greater biota sediment accumulation factors (BSAFs). Transition metal concentrations in the sediment were an average of 6× higher in the low marsh zone compared to the high marsh zone and heavy metals were on average 2× higher. Tissue- and species-specific preferential accumulation in bivalves provide opportunities for tailored biomonitoring programs. For example, mussel byssal threads accumulated ten of the sixteen studied elements to significantly greater concentrations compared to soft tissues and oysters had remarkably high soft tissue zinc concentrations (~5000 mg/kg) compared to all other species and element combinations studied. Additionally, some of our results have important implications for understanding metal mobility and implementing effective remediation (specifically phytoremediation) strategies, including observations that (1) heavy metals exhibit distinct concentration spatial distributions and metal fractionation patterns which vary from the transition metals and (2) sediment organic matter fraction appears to play an important role in controlling sediment metal concentrations, fractionation, and plant bioavailability.


Assuntos
Bivalves , Metais Pesados , Animais , Áreas Alagadas , Ecossistema , Disponibilidade Biológica , Sedimentos Geológicos , Metais Pesados/análise , Sudeste dos Estados Unidos , Plantas Tolerantes a Sal , Água , Monitoramento Ambiental
7.
ChemSusChem ; 14(12): 2621-2630, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33909321

RESUMO

One of the most promising electrolytes for all-solid-state lithium batteries is Li7 La3 Zr2 O12 . Previously, their thermodynamic stability, Li-ion conductivity, and structural features induced by Ga-doping have not been empirically determined or correlated. Here, their interplay was examined for Li7-3x Gax La3 Zr2 O12 with target xGa=0, 0.25, 0.50, 0.75, and 1.00 atoms per formula unit (apfu). Formation enthalpies, obtained with calorimetry and found to be exothermic at all compositions, linearly decreased in stability with increased xGa. At dilute xGa substitution, the formation enthalpy curve shifted stepwise endothermically, and the conductivity increased to a maximum, coinciding with 0.529 Ga apfu. This correlated with percolation threshold analysis (0.558 Ga apfu). Further substitution (0.787 Ga apfu) produced a large decrease in the stability and conductivity due to a large increase in point defects and blocked Li-migration pathways. At xGa=1.140 apfu, a small exothermic shift was related to defect cluster organization extending the Li hopping distance and decreased Li-ion conductivity.

8.
Nat Commun ; 10(1): 59, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610189

RESUMO

Extended-coordination sphere interactions between dissolved metals and other ions, including electrolyte cations, are not known to perturb the electrochemical behavior of metal cations in water. Herein, we report the stabilization of higher-oxidation-state Np dioxocations in aqueous chloride solutions by hydrophobic tetra-n-alkylammonium (TAA+) cations-an effect not exerted by fully hydrated Li+ cations under similar conditions. Experimental and molecular dynamics simulation results indicate that TAA+ cations not only drive enhanced coordination of anionic Cl- ligands to NpV/VI but also associate with the resulting Np complexes via non-covalent interactions, which together decrease the electrode potential of the NpVI/NpV couple by up to 220 mV (ΔΔG = -22.2 kJ mol-1). Understanding the solvation-dependent interplay between electrolyte cations and metal-oxo species opens an avenue for controlling the formation and redox properties of metal complexes in solution. It also provides valuable mechanistic insights into actinide separation processes that widely use quaternary ammonium cations as extractants or in room temperature ionic liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA