Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochimie ; 94(3): 776-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155087

RESUMO

The influenza viruses contain a segmented, negative strand RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP) and is associated with the polymerase complex into ribonucleoprotein (RNP) particles. Despite its importance in the virus life cycle, the interactions between the NP and the genome are not well understood. Here, we studied the assembly process of NP-RNA oligomers and analyzed how the oligomeric/monomeric status of RNA-free NP affects RNA binding and oligomerization. Recombinant wild-type NP purified in low salt concentrations and a derived mutant engineered for oligomerization deficiency (R416A) were mainly monomeric in RNA-free solutions as shown by biochemical and electron microscopy techniques. NP monomer formed with RNA a fast 1/1 complex characterized by surface plasmon resonance. In a subsequent and slow process that depended on the RNA length, oligomerization of NP was mediated by RNA binding. In contrast, preparations of wild-type NP purified in high salt concentrations as well as mutant Y148A engineered for deficiency in nucleic acid binding were partly or totally oligomeric in RNA-free solutions. These trimer/tetramer NP oligomers bind directly as oligomers to RNA with a higher affinity than that of the monomers. Both oligomerization routes we characterized could be exploited by cellular or viral factors to modulate or control viral RNA encapsidation by NP.


Assuntos
Vírus da Influenza A/metabolismo , Nucleoproteínas/metabolismo , Microscopia Eletrônica , Nucleoproteínas/ultraestrutura , Multimerização Proteica , Ressonância de Plasmônio de Superfície
2.
Virology ; 375(1): 85-93, 2008 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-18308357

RESUMO

The blood-sucking reduviid bug Triatoma infestans, one of the most important vector of American human trypanosomiasis (Chagas disease) is infected by the Triatoma virus (TrV). TrV has been classified as a member of the Cripavirus genus (type cricket paralysis virus) in the Dicistroviridae family. This work presents the three-dimensional cryo-electron microscopy (cryo-EM) reconstruction of the TrV capsid at about 25 A resolution and its use as a template for phasing the available crystallographic data by the molecular replacement method. The main structural differences between the cryo-EM reconstruction of TrV and other two viruses, one from the same family, the cricket paralysis virus (CrPV) and the human rhinovirus 16 from the Picornaviridae family are presented and discussed.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Picornaviridae/ultraestrutura , Animais , Modelos Moleculares , Triatoma/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA