RESUMO
A method for isolating transcriptionally active RNA for downstream applications from diverse tissues of Jatropha curcas, a plant rich in latex, lipids, waxes, polysaccharide, polyphenols, and secondary metabolites, is described. The described method uses alkaline borate buffer during tissue homogenization to negate the formation of viscous gel observed in guanidium-salt-containing methods. By this method, quality RNA was extracted from leaf, immature inflorescence, endosperm, and root tissues with yields ranging from 1.80 to 7.80mg/100mg fresh weight (FW). The total RNA obtained was found to be suitable for poly(A)(+)RNA purification, complementary DNA (cDNA) synthesis, cloning of full-length cDNA, and cDNA library construction.
Assuntos
Jatropha/genética , RNA de Plantas/isolamento & purificação , Boratos/química , Folhas de Planta/genética , Raízes de Plantas/genéticaRESUMO
With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.
Assuntos
Biocombustíveis , Conservação de Recursos Energéticos/métodos , Genes de Plantas , Jatropha/genética , Sementes/fisiologia , Biomarcadores , Cruzamento , Clonagem Molecular , Etiquetas de Sequências Expressas , Ácidos Graxos/análise , Perfilação da Expressão Gênica , Engenharia Genética/métodos , Variação Genética , Germinação , Jatropha/crescimento & desenvolvimento , Jatropha/fisiologia , Óleos de Plantas/análise , Proteômica , Sementes/crescimento & desenvolvimento , Estresse FisiológicoRESUMO
Sustainable biofuel sources require the new sources of biofuel crops that can be developed into scalable plantation to meet the growing energy demands. Diverse supply sources of bioenergy plantations (edible, nonedible, and perennial grasses) will enable de-risking impact on geography and climate change that humans are likely to face in future. Use of phenotypic descriptors alone does not provide a deep insight into plantation population dynamics and molecular diversity of a biofuel crop. We provide protocols and methods to rapidly assess population parameters for emerging biofuel crops using genomics. This article has an application focus on next-generation sequencing to assess biofuel crop diversity. Use of these methods can accelerate germplasm assessment to accelerate population development and creation of sustainable biofuel plantations.
Assuntos
Agricultura/métodos , Biocombustíveis/análise , Produtos Agrícolas/genética , Biomassa , Ecossistema , Variação Genética/genética , SoloRESUMO
BACKGROUND: Environmentally inflicted stresses such as salinity and drought limit the plant productivity both in natural and agricultural system. Increasing emphasis has been directed to molecular breeding strategies to enhance the intrinsic ability of plant to survive stress conditions. Functional screens in microorganisms with heterologous genes are a rapid, effective and powerful tool to identify stress tolerant genes in plants. Jatropha curcas (Physic nut) has been identified as a potential source of biodiesel plant. In order to improve its productivity under stress conditions to benefit commercial plantations, we initiated prospecting of novel genes expressed during stress in J. curcas that can be utilized to enhance stress tolerance ability of plant. RESULTS: To identify genes expressed during salt tolerance, cDNA expression libraries were constructed from salt-stressed roots of J. curcas, regulated under the control of the yeast GAL1 system. Using a replica based screening, twenty thousand yeast transformants were screened to identify transformants expressing heterologous gene sequences from J. curcas with enhanced ability to tolerate stress. From the screen we obtained 32 full length genes from J. curcas [GenBank accession numbers FJ489601-FJ489611, FJ619041-FJ619057 and FJ623457-FJ623460] that can confer abiotic stress tolerance. As a part of this screen, we optimized conditions for salt stress in J. curcas, defined parameters for salt stress in yeast, as well as isolated three salt hypersensitive yeast strains shs-2, shs-6 and shs-8 generated through a process of random mutagenesis, and exhibited growth retardation beyond 750 mM NaCl. Further, we demonstrated complementation of the salt sensitive phenotypes in the shs mutants, and analyzed the expression patterns for selected J. curcas genes obtained from the screen in both leaf and root tissues after salt stress treatments. CONCLUSIONS: The approach described in this report provides a rapid and universal assay system for large scale screening of genes for varied abiotic stress tolerance within a short span of time. Using this screening strategy we could isolate both genes with previously known function in stress tolerance as well as novel sequences with yet unknown function in salt stress tolerance from J. curcas. The isolated genes could be over-expressed using plant expression system to generate and evaluate transgenic plants for stress tolerance as well as be used as markers for breeding salt stress tolerance in plants.
Assuntos
Jatropha/genética , Plantas Tolerantes a Sal/genética , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Jatropha/crescimento & desenvolvimento , Mutagênese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Análise de Sequência de DNA , Transformação Genética , Leveduras/genéticaRESUMO
Extracellular vesicles (EVs) are small membrane-bound sacs, identified in many body fluids of humans. Standard extracellular vesicle separation methods such as differential and ultracentrifugation are very expensive, not affordable in academic labs. So, the current research tried to isolate seminal plasma EVs using polyethylene glycol (PEG) precipitation process. Normospermia semen from "Milann - The Fertility Center" processed to isolate EVs by PEG method. Nanodrop spectrophotometer showed presence of EVs by indirectly measuring protein content of precipitated EVs. EVs isolated by PEG precipitation showed a wide size range from 30 to 1000 nm with Z average of 75.4 nm and a PI of 0.464, whereas ultracentrifuge sample showed size range of 60-1000 nm with Z average of 501.3 nm with a PI of 0.692. Edax analysis also showed good elemental pattern. Total RNA extraction from PEG EVs analysed with nanodrop spectrophotometer, showed presence of RNA content in varying concentrations obtained from different ratios in nanograms. Thus, the current study concludes that seminal plasma EVs isolated by PEG precipitation is simple, reproducible and non-sensitive to carry out at academic labs.