Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Transfus Apher Sci ; 60(3): 103162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34083162

RESUMO

Aging is associated with the impairment of stem cell activation, leading to the functional decline of tissues and increasing the risk for age-associated diseases. The old, damaged or unrepaired tissues disturb distant tissue homeostasis by secreting factors into the circulation, which may not only serve as biomarkers for specific age-associated pathologies but also induce a variety of degenerative phenotypes. In this review, we summarize and discuss systemic determinants that perpetuate age-related tissue dysfunction. We further elaborate on the effects of attenuating these circulating factors by highlighting recent advances which utilize plasmapheresis in a pre-clinical or clinical setting. Overall, we postulate that repositioning therapeutic plasma exchange (TPE) to dilute the systemic factors, which become deleterious at their age-elevated levels, could be a rapidly effective rejuvenation therapy that recalibrates crucial signaling pathways to a youthful state.


Assuntos
Sangue/metabolismo , Plasmaferese/métodos , Fatores Etários , Animais , Humanos , Camundongos
2.
Nat Metab ; 4(8): 995-1006, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902645

RESUMO

ABSTACT: Ageing is the largest risk factor for many chronic diseases. Studies of heterochronic parabiosis, substantiated by blood exchange and old plasma dilution, show that old-age-related factors are systemically propagated and have pro-geronic effects in young mice. However, the underlying mechanisms how bloodborne factors promote ageing remain largely unknown. Here, using heterochronic blood exchange in male mice, we show that aged mouse blood induces cell and tissue senescence in young animals after one single exchange. This induction of senescence is abrogated if old animals are treated with senolytic drugs before blood exchange, therefore attenuating the pro-geronic influence of old blood on young mice. Hence, cellular senescence is neither simply a response to stress and damage that increases with age, nor a chronological cell-intrinsic phenomenon. Instead, senescence quickly and robustly spreads to young mice from old blood. Clearing senescence cells that accumulate with age rejuvenates old circulating blood and improves the health of multiple tissues.


Assuntos
Senescência Celular , Parabiose , Envelhecimento/fisiologia , Animais , Senescência Celular/fisiologia , Masculino , Camundongos
3.
Skelet Muscle ; 10(1): 4, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033591

RESUMO

Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.


Assuntos
Envelhecimento/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Envelhecimento/fisiologia , Animais , Autorrenovação Celular , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Cultura Primária de Células/métodos
4.
Aging (Albany NY) ; 12(10): 8790-8819, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32474458

RESUMO

Heterochronic blood sharing rejuvenates old tissues, and most of the studies on how this works focus on young plasma, its fractions, and a few youthful systemic candidates. However, it was not formally established that young blood is necessary for this multi-tissue rejuvenation. Here, using our recently developed small animal blood exchange process, we replaced half of the plasma in mice with saline containing 5% albumin (terming it a "neutral" age blood exchange, NBE) thus diluting the plasma factors and replenishing the albumin that would be diminished if only saline was used. Our data demonstrate that a single NBE suffices to meet or exceed the rejuvenative effects of enhancing muscle repair, reducing liver adiposity and fibrosis, and increasing hippocampal neurogenesis in old mice, all the key outcomes seen after blood heterochronicity. Comparative proteomic analysis on serum from NBE, and from a similar human clinical procedure of therapeutic plasma exchange (TPE), revealed a molecular re-setting of the systemic signaling milieu, interestingly, elevating the levels of some proteins, which broadly coordinate tissue maintenance and repair and promote immune responses. Moreover, a single TPE yielded functional blood rejuvenation, abrogating the typical old serum inhibition of progenitor cell proliferation. Ectopically added albumin does not seem to be the sole determinant of such rejuvenation, and levels of albumin do not decrease with age nor are increased by NBE/TPE. A model of action (supported by a large body of published data) is that significant dilution of autoregulatory proteins that crosstalk to multiple signaling pathways (with their own feedback loops) would, through changes in gene expression, have long-lasting molecular and functional effects that are consistent with our observations. This work improves our understanding of the systemic paradigms of multi-tissue rejuvenation and suggest a novel and immediate use of the FDA approved TPE for improving the health and resilience of older people.


Assuntos
Albuminas/farmacologia , Camadas Germinativas , Troca Plasmática , Plasma/fisiologia , Rejuvenescimento/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Células Cultivadas , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Solução Salina/farmacologia
5.
J Cachexia Sarcopenia Muscle ; 11(4): 1047-1069, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32157826

RESUMO

BACKGROUND: Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS: The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS: ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS: This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.


Assuntos
Aldeído Desidrogenase/metabolismo , Envelhecimento Saudável/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Homeostase , Humanos
6.
Aging (Albany NY) ; 11(15): 5628-5645, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31422380

RESUMO

We hypothesize that altered intensities of a few morphogenic pathways account for most/all the phenotypes of aging. Investigating this has revealed a novel approach to rejuvenate multiple mammalian tissues by defined pharmacology. Specifically, we pursued the simultaneous youthful in vivo calibration of two determinants: TGF-beta which activates ALK5/pSmad 2,3 and goes up with age, and oxytocin (OT) which activates MAPK and diminishes with age. The dose of Alk5 inhibitor (Alk5i) was reduced by 10-fold and the duration of treatment was shortened (to minimize overt skewing of cell-signaling pathways), yet the positive outcomes were broadened, as compared with our previous studies. Alk5i plus OT quickly and robustly enhanced neurogenesis, reduced neuro-inflammation, improved cognitive performance, and rejuvenated livers and muscle in old mice. Interestingly, the combination also diminished the numbers of cells that express the CDK inhibitor and marker of senescence p16 in vivo. Summarily, simultaneously re-normalizing two pathways that change with age in opposite ways (up vs. down) synergistically reverses multiple symptoms of aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Rejuvenescimento , Envelhecimento/genética , Animais , Cognição/efeitos dos fármacos , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Ocitocina/genética , Desempenho Psicomotor/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Nat Biomed Eng ; 3(6): 427-437, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31097816

RESUMO

Most methods for the detection of nucleic acids require many reagents and expensive and bulky instrumentation. Here, we report the development and testing of a graphene-based field-effect transistor that uses clustered regularly interspaced short palindromic repeats (CRISPR) technology to enable the digital detection of a target sequence within intact genomic material. Termed CRISPR-Chip, the biosensor uses the gene-targeting capacity of catalytically deactivated CRISPR-associated protein 9 (Cas9) complexed with a specific single-guide RNA and immobilized on the transistor to yield a label-free nucleic-acid-testing device whose output signal can be measured with a simple handheld reader. We used CRISPR-Chip to analyse DNA samples collected from HEK293T cell lines expressing blue fluorescent protein, and clinical samples of DNA with two distinct mutations at exons commonly deleted in individuals with Duchenne muscular dystrophy. In the presence of genomic DNA containing the target gene, CRISPR-Chip generates, within 15 min, with a sensitivity of 1.7 fM and without the need for amplification, a significant enhancement in output signal relative to samples lacking the target sequence. CRISPR-Chip expands the applications of CRISPR-Cas9 technology to the on-chip electrical detection of nucleic acids.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Grafite/química , Proteínas Imobilizadas/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Transistores Eletrônicos , DNA/genética , Distrofina/genética , Éxons/genética , Genoma , Células HEK293 , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Mutação/genética , RNA Guia de Cinetoplastídeos/metabolismo
8.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30613384

RESUMO

This review discusses current bottlenecks in making CRISPR-Cas9-mediated genome editing a therapeutic reality and it outlines recent strategies that aim to overcome these hurdles as well as the scope of current clinical trials that pioneer the medical translation of CRISPR-Cas9. Additionally, this review outlines the specifics of disease-modifying gene editing in recessive versus dominant genetic diseases with the focus on genetic myopathies that are exemplified by Duchenne muscular dystrophy and myotonic dystrophies.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Animais , Sistemas CRISPR-Cas/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Miotônica/genética
9.
Med Sci (Paris) ; 32 Hors série n°2: 30-39, 2016 Nov.
Artigo em Francês | MEDLINE | ID: mdl-27869075

RESUMO

Heart failure is a major concern for public health systems, and several approaches of cellular therapy are being investigated with the goal of improving the function of these failing hearts. Many cell types have been used (skeletal myoblasts, hematopoietic, endothelial or mesenchymal progenitors, cardiac cells…), most often in the indication of post-ischemic heart failure rather than in the indication of genetic dilated cardiomyopathy. It is easier, indeed, to target a restricted area than the whole myocardium. Several clinical trials have reported slight but encouraging functional benefits, but their interpretations were frequently limited by the small sizes of cohorts, and by the biological variabilities inherent to the patients status and to the biology of the cells. These trials also shed light on unexpected mechanisms of action of the cells, which are changing the concepts and methodologies of the studies. The functional benefits observed would be due, indeed, to the secretion of trophic factors by the cells, instead of their true structural and mechanical integration within the myocardial tissue. Accordingly, the new generations of clinical trials aim at improving the size and homogeneity of the patient cohorts to increase the statistical power. On the other hand, several studies are associating or conditionning cells with biomaterials or cocktails of cytokines to improve their survival and their biological efficacy. In parallel, bio-engineering investigates several ways to support cells in vitro and in vivo, to sustain the architectural structure of the failing myocardium, to produce ex vivo some true substitutive cardiac tissue, or to purely replace the cells by their active secreted products. Several therapeutic devices should emerge from these researches, and the choice of their respective use will be ultimately guided by the medical indication.


Assuntos
Cardiomiopatias/terapia , Terapia Baseada em Transplante de Células e Tecidos , Cardiopatias/terapia , Cardiomiopatia Dilatada/terapia , Células-Tronco Embrionárias , Insuficiência Cardíaca/terapia , Humanos , Mioblastos , Miócitos Cardíacos , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA