Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 208(0): 395-407, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29808189

RESUMO

Bimetallic gold based catalysts have been prepared using a sol immobilisation technique. Despite a very similar metal dispersion, different structures are revealed depending on the second metal, with alloyed systems being preferred in the case of Pd, Pt and Cu, and core-shell in the case of Ru. A positive synergistic effect between the metals has been revealed only in the cases of Pd and Cu in the oxidation of benzyl alcohol. AuPd/C has been also studied in the hydrogenation of benzaldehyde where the bimetallic catalyst revealed a different selectivity compared to the monometallic counterpart.

2.
Exp Physiol ; 94(12): 1185-99, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19666692

RESUMO

We examined the effect of arousals (shifts from sleep to wakefulness) on breathing during sleep using a mathematical model. The model consisted of a description of the fluid dynamics and mechanical properties of the upper airways and lungs, as well as a controller sensitive to arterial and brain changes in CO(2), changes in arterial oxygen, and a neural input, alertness. The body was divided into multiple gas store compartments connected by the circulation. Cardiac output was constant, and cerebral blood flows were sensitive to changes in O(2) and CO(2) levels. Arousal was considered to occur instantaneously when afferent respiratory chemical and neural stimulation reached a threshold value, while sleep occurred when stimulation fell below that value. In the case of rigid and nearly incompressible upper airways, lowering arousal threshold decreased the stability of breathing and led to the occurrence of repeated apnoeas. In more compressible upper airways, to maintain stability, increasing arousal thresholds and decreasing elasticity were linked approximately linearly, until at low elastances arousal thresholds had no effect on stability. Increased controller gain promoted instability. The architecture of apnoeas during unstable sleep changed with the arousal threshold and decreases in elasticity. With rigid airways, apnoeas were central. With lower elastances, apnoeas were mixed even with higher arousal thresholds. With very low elastances and still higher arousal thresholds, sleep consisted totally of obstructed apnoeas. Cycle lengths shortened as the sleep architecture changed from mixed apnoeas to total obstruction. Deeper sleep also tended to promote instability by increasing plant gain. These instabilities could be countered by arousal threshold increases which were tied to deeper sleep or accumulated aroused time, or by decreased controller gains.


Assuntos
Nível de Alerta/fisiologia , Fenômenos Fisiológicos Respiratórios , Sono/fisiologia , Retroalimentação , Humanos , Masculino , Modelos Neurológicos , Síndromes da Apneia do Sono/fisiopatologia
3.
Leukemia ; 21(3): 427-38, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17215852

RESUMO

A high incidence of relapses following induction chemotherapy is a major hindrance to patient survival in acute myelogenous leukemia (AML). There is strong evidence that activation of the phosphoinositide 3 kinase (PI3K)/Akt signaling network plays a significant role in rendering AML blasts drug resistant. An important mechanism underlying drug resistance is represented by overexpression of membrane drug transporters such as multidrug resistance-associated protein 1 (MRP1) or 170-kDa P-glycoprotein (P-gp). Here, we present evidence that MRP1, but not P-gp, expression is under the control of the PI3K/Akt axis in AML blasts. We observed a highly significant correlation between levels of phosphorylated Akt and MRP1 expression in AML cells. Furthermore, incubation of AML blasts with wortmannin, a PI3K pharmacological inhibitor, resulted in lower levels of phosphorylated Akt, downregulated MRP1 expression, and decreased Rhodamine 123 extrusion in an in vitro functional dye efflux assay. We also demonstrate that wortmannin-dependent PI3K/Akt inhibition upregulated p53 protein levels in most AML cases, and this correlated with diminished MRP1 expression and enhanced phosphorylation of murine double minute 2 (MDM2). Taken together, these data suggest that PI3K/Akt activation may lead to the development of chemoresistance in AML blasts through a mechanism involving a p53-dependent suppression of MRP1 expression.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/fisiologia , Leucemia Mieloide/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Androstadienos/farmacologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Feminino , Corantes Fluorescentes/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/genética , Genes p53 , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/metabolismo , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Promielocítica Aguda/patologia , Leucemia-Linfoma de Células T do Adulto/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/genética , Rodamina 123/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Wortmanina
4.
Leukemia ; 21(5): 886-96, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17361225

RESUMO

Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.


Assuntos
Apoptose/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p27 , Citarabina/farmacologia , Regulação para Baixo , Etoposídeo/farmacologia , Células HL-60 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Receptor IGF Tipo 1/metabolismo
5.
Leukemia ; 32(1): 1-10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951560

RESUMO

CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients.


Assuntos
Caseína Quinase II/metabolismo , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
6.
Dalton Trans ; 47(9): 2939-2948, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29441378

RESUMO

A class of heterogeneous catalysts based on commercial bentonite from natural origin, containing at least 80 wt% of montmorillonite clay, was designed to transform selectively and under mild conditions toxic organosulfur and organophosphorus chemical warfare agents into non-noxious products with a reduced impact on health and environment. The bentonite from the natural origin was modified by introducing iron species and acid sites in the interlayer space, aiming to obtain a sorbent with strong catalytic oxidising and hydrolytic properties. The catalytic performance of these materials was evaluated in the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, in the presence of aqueous hydrogen peroxide as an oxidant. A new decontamination formulation was, moreover, proposed and obtained by mixing sodium perborate, as a solid oxidant, to iron-bentonite catalysts. Solid-phase decontamination tests, performed on a cotton textile support contaminated with organosulfide and organophosphonate simulant agents revealed the good activity of the solid formulation, especially in the in situ detoxification of blistering agents. Tests carried out on the real blistering warfare agent, sulfur mustard (HD agent), showed that, thanks to the co-presence of the iron-based clay together with the solid oxidant component, a good decontamination of the test surface from the real warfare agent could be achieved (80% contaminant degradation, under ambient conditions, in 24 h).

7.
Neurogastroenterol Motil ; 30(9): e13346, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29644781

RESUMO

BACKGROUND: Achalasia is a rare motility disorder characterized by myenteric neuron and interstitial cells of Cajal (ICC) abnormalities leading to deranged/absent peristalsis and lack of relaxation of the lower esophageal sphincter. The mechanisms contributing to neuronal and ICC changes in achalasia are only partially understood. Our goal was to identify novel molecular features occurring in patients with primary achalasia. METHODS: Esophageal full-thickness biopsies from 42 (22 females; age range: 16-82 years) clinically, radiologically, and manometrically characterized patients with primary achalasia were examined and compared to those obtained from 10 subjects (controls) undergoing surgery for uncomplicated esophageal cancer (or upper stomach disorders). Tissue RNA extracted from biopsies of cases and controls was used for library preparation and sequencing. Data analysis was performed with the "edgeR" option of R-Bioconductor. Data were validated by real-time RT-PCR, western blotting and immunohistochemistry. KEY RESULTS: Quantitative transcriptome evaluation and cluster analysis revealed 111 differentially expressed genes, with a P ≤ 10-3 . Nine genes with a P ≤ 10-4 were further validated. CYR61, CTGF, c-KIT, DUSP5, EGR1 were downregulated, whereas AKAP6 and INPP4B were upregulated in patients vs controls. Compared to controls, immunohistochemical analysis revealed a clear increase in INPP4B, whereas c-KIT immunolabeling resulted downregulated. As INPP4B regulates Akt pathway, we used western blot to show that phospho-Akt was significantly reduced in achalasia patients vs controls. CONCLUSIONS & INFERENCES: The identification of altered gene expression, including INPP4B, a regulator of the Akt pathway, highlights novel signaling pathways involved in the neuronal and ICC changes underlying primary achalasia.


Assuntos
Acalasia Esofágica/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Proteínas Proto-Oncogênicas c-kit/biossíntese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Regulação para Baixo , Feminino , Humanos , Células Intersticiais de Cajal/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Transcriptoma , Adulto Jovem
8.
Curr Med Chem ; 14(19): 2009-23, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17691943

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B, PKB)/mammalian Target Of Rapamycin (mTOR) signaling pathway plays a critical role in many cellular functions which are elicited by extracellular stimuli. However, constitutively active PI3K/Akt/mTOR signaling has also been firmly established as a major determinant for cell growth, proliferation, and survival in an wide array of human cancers. Thus, blocking the PI3K/AKT/mTOR signal transduction network could be an effective new strategy for targeted anticancer therapy. Pharmacological inhibitors of this signaling cascade are powerful antineoplastic agents in vitro and in xenografted models of tumors, and some of them are now being tested in clinical trials. Recent studies showed that PI3K/Akt/mTOR axis is frequently activated in acute myelogenous leukemia (AML) patient blasts and strongly contributes to proliferation, survival, and drug-resistance of these cells. Both the disease-free survival and overall survival are significantly shorter in AML cases with PI3K/Akt/mTOR upregulation. Therefore, this signal transduction cascade may represent a target for innovative therapeutic treatments of AML patients. In this review, we discuss the possible mechanisms of activation of this pathway in AML cells and the downstream molecular targets of the PI3K/Akt/mTOR signaling network which are important for blocking apoptosis, enhancing proliferation, and promoting drug-resistance of leukemic cells. We also highlight several pharmacological inhibitors which have been used to block this pathway for targeted therapy of AML. These small molecules induce apoptosis or sensitize AML cells to existing drugs, and might be used in the future for improving the outcome of this hematological disorder.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antibióticos Antineoplásicos/uso terapêutico , Apoptose , Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR
9.
Leukemia ; 20(6): 911-28, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16642045

RESUMO

The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells. Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts in vitro. Thus, inhibitory molecules are currently being developed for clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular, for insulin signaling, so that its blockade in vivo might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors.


Assuntos
Leucemia Mieloide/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Doença Aguda , Humanos , Leucemia Mieloide/tratamento farmacológico , Modelos Biológicos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
10.
Eur J Histochem ; 50(1): 9-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16584979

RESUMO

The existence of intranuclear lipid-dependent signal transduction systems has been demonstrated by several independent groups. Remarkably, intranuclear lipid-dependent signal transduction pathways are regulated independently from their membrane/cytosolic counterparts. A sizable body of evidence suggests that nuclear lipid signaling controls critical biological functions such as cell proliferation, differentiation, and apoptosis. Diacylglycerol (DG) is a fundamental lipid second messenger which is produced in the nucleus. Since the levels of nuclear DG fluctuate during the cell cycle progression, it has been suggested that this lipid second messenger has important regulatory roles. Most likely, nuclear DG serves as a chemoattractant for some isoforms of protein kinase C that migrate to the nucleus in response to a variety of agonists. The nucleus also contains diacylglycerol kinases (DGKs), i.e. the enzymes that, by converting DG into phosphatidic acid (PA), terminate DG-dependent events. This review aims at highlighting the different isozymes of DGKs present within the nucleus as well as at discussing their potential functions with particular emphasis placed on DNA replication.


Assuntos
Núcleo Celular/enzimologia , Replicação do DNA , Diacilglicerol Quinase/biossíntese , Animais , Núcleo Celular/genética , Diacilglicerol Quinase/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Metabolismo dos Lipídeos/genética , Camundongos , Ratos
11.
Leukemia ; 30(11): 2142-2151, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27461062

RESUMO

Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/enzimologia , Terapia de Alvo Molecular/métodos , Progressão da Doença , Humanos , Lisofosfolipídeos/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores
12.
Leukemia ; 28(3): 543-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24253024

RESUMO

Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945-a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.


Assuntos
Antineoplásicos/uso terapêutico , Caseína Quinase II/antagonistas & inibidores , Naftiridinas/uso terapêutico , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transdução de Sinais , Resposta a Proteínas não Dobradas , Animais , Divisão Celular , Chaperona BiP do Retículo Endoplasmático , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/química , Fenazinas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-23215723

RESUMO

The phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) are two major signaling molecules in the PI3K/Akt/mTOR signal transduction cascade. This pathway is a key regulator of a wide range of physiological cell processes which include proliferation, differentiation, survival, metabolism, exocytosis, motility, and autophagy. However, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences response to therapeutic treatments. Therefore, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome. The PI3K/Akt/mTOR signaling network is activated in acute leukemias of both myelogenous and lymphoid lineage, where it correlates with poor prognosis and enhanced drug-resistance. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds that targeted the catalytic site of both PI3K and mTOR (e.g. PI-103, NVP-BEZ235). In preclinical settings, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against leukemic cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin and its derivatives (rapalogs). At variance with rapamycin/rapalogs, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenetic protein translation in leukemic cells. Hence, they strongly reduced the proliferation rate and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors represent a promising option for future targeted therapies of leukemic patients.

14.
Neurogastroenterol Motil ; 24(10): e497-508, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22897442

RESUMO

BACKGROUND: GDNF/RET and Endothelin-3 (ET-3)/EDNRB regulate survival, differentiation, migration, and proliferation of neural crest-derived cells. Although several RET and EDNRB signalling mediators have been characterized, most of the genes targeted by these two pathways are still largely unknown. We focused our study on apolipoprotein B (APOB) as a novel target gene of the RET and EDNRB pathways, based on previous data obtained using a Caenorhabditis elegans strain mutant for the homologue of mammalian ECE1. METHODS: Molecular and cellular studies of Apob were performed in the murine Neuro2a cells, an in vitro model for studying neural crest-derived cell development, along with a mouse knock-in for the Hirschsprung-associated mutation Ret(C620R). Silencing for Apob and Ret has been performed via shRNA. KEY RESULTS: GDNF/RET and ET-3/EDNRB cooperated in inducing neuronal differentiation resulting in Apob activation in Neuro2a cell line. Apob expression was downregulated in mouse embryos homozygous for the Ret(C620R) mutation and presenting a severe Hirschsprung phenotype. Ret silencing prevented Apob expression increase. MAPK P38 kinase activation evoked Apob expression via GDNF/RET signalling in Neuro2a cells. A p53-dependent repressor element in Apob promoter resulted in a reduced Apob expression. Silencing of Apob reduced HuD protein expression. CONCLUSIONS & INFERENCES: Apob is a novel downstream target of the RET/EDNRB pathways with a role in neuronal survival and maintenance, as indicated by its effect on HuD expression. Our data provide a conceptual framework to investigate and establish the role of APOB gene in severe gut dysmotility.


Assuntos
Apolipoproteínas B/metabolismo , Endotelina-3/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Apolipoproteínas B/genética , Western Blotting , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Endotelina-3/genética , Técnicas de Introdução de Genes , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo
15.
Leukemia ; 26(11): 2336-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22614243

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/ß and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34(+)/CD4(-)/CD7(-)), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Transdução de Sinais
16.
Curr Med Chem ; 18(15): 2234-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21517756

RESUMO

Indoleamine 2,3-dioxygenase (IDO) is an intracellular heme-containing enzyme that catalyzes the initial rate-limiting step in tryptophan degradation along the kynurenine pathway. Recent works have demonstrated a crucial role for IDO in the induction of immune tolerance during infections, pregnancy, transplantation, autoimmunity, and neoplasias. IDO is widely expressed in human tissues and cell subsets, including dendritic cells, where it modulates their function by increasing tolerogenic capacities. The aim of the present paper is to highlight the most recent data about IDO expression in dendritic cells and its role as a potent inducer of T regulatory cells.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Linfócitos T Reguladores/imunologia , Autoimunidade , Doenças Transmissíveis/enzimologia , Doenças Transmissíveis/imunologia , Células Dendríticas/enzimologia , Feminino , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia , Gravidez , Linfócitos T Reguladores/enzimologia , Imunologia de Transplantes
17.
Curr Med Chem ; 18(18): 2715-26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21649579

RESUMO

Cancer stem cells (CSCs) comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts of genetically modified murine models. CSCs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation, and metastasis. The existence of CSCs could explain the high frequency of neoplasia relapse and resistance to all of currently available therapies, including chemotherapy. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is a key regulator of physiological cell processes which include proliferation, differentiation, apoptosis, motility, metabolism, and autophagy. Nevertheless, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences prognosis. Several lines of evidence indicate that this signaling system plays a key role also in CSC biology. Of note, CSCs are more sensitive to pathway inhibition with small molecules when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling transduction pathways between CSCs and healthy stem cells can be identified. Here, we review the evidence which links the signals deriving from the PI3K/Akt/mTOR network with CSC biology, both in hematological and solid tumors. We then highlight how therapeutic targeting of PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome, by eliminating CSCs.


Assuntos
Mamíferos/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
18.
Leukemia ; 25(5): 781-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21331075

RESUMO

The mammalian Target Of Rapamycin (mTOR) serine/threonine kinase belongs to two multi-protein complexes, referred to as mTORC1 and mTORC2. mTOR-generated signals have critical roles in leukemic cell biology by controlling mRNA translation of genes that promote proliferation and survival. However, allosteric inhibition of mTORC1 by rapamycin has only modest effects in T-cell acute lymphoblastic leukemia (T-ALL). Recently, ATP-competitive inhibitors specific for the mTOR kinase active site have been developed. In this study, we have explored the therapeutic potential of active-site mTOR inhibitors against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. The inhibitors affected T-ALL cell viability by inducing cell-cycle arrest in G(0)/G(1) phase, apoptosis and autophagy. Western blot analysis demonstrated a Ser 473 Akt dephosphorylation (indicative of mTORC2 inhibition) and a dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors. The inhibitors strongly synergized with both vincristine and the Bcl-2 inhibitor, ABT-263. Remarkably, the drugs targeted a putative leukemia-initiating cell sub-population (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, the inhibitors displayed remarkable anti-leukemic activity, which emphasizes their future development as clinical candidates for therapy in T-ALL.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Western Blotting , Domínio Catalítico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imunossupressores/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
19.
Leukemia ; 25(7): 1080-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21494257

RESUMO

The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.


Assuntos
Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Leucemia/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/fisiologia , Quinases raf/fisiologia , Proteínas ras/fisiologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Modelos Biológicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética
20.
Leukemia ; 25(7): 1064-79, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21436840

RESUMO

It has become apparent that regulation of protein translation is an important determinant in controlling cell growth and leukemic transformation. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway is often implicated in sensitivity and resistance to therapy. Dysregulated signaling through the PI3K/PTEN/Akt/mTOR pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Furthermore, this pathway is activated by autocrine transformation mechanisms. PTEN is a critical tumor suppressor gene and its dysregulation results in the activation of Akt. PTEN is often mutated, silenced and is often haploinsufficient. The mTOR complex1 (mTORC1) regulates the assembly of the eukaryotic initiation factor4F complex, which is critical for the translation of mRNAs that are important for cell growth, prevention of apoptosis and transformation. These mRNAs have long 5'-untranslated regions that are G+C rich, rendering them difficult to translate. Elevated mTORC1 activity promotes the translation of these mRNAs via the phosphorylation of 4E-BP1. mTORC1 is a target of rapamycin and novel active-site inhibitors that directly target the TOR kinase activity. Although rapamycin and novel rapalogs are usually cytostatic and not cytotoxic for leukemic cells, novel inhibitors that target the kinase activities of PI3K and mTOR may prove more effective for leukemia therapy.


Assuntos
Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas de Neoplasias/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Leucemia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/genética , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/efeitos dos fármacos , Complexos Multiproteicos/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Proteínas/efeitos dos fármacos , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Pseudogenes , RNA Mensageiro/genética , RNA Neoplásico/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA