Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(5): 2814-2828, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31985111

RESUMO

Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter-annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics-particularly for insects. We use a 20 year study on a tri-trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local-scale aphid population dynamics. Warmer temperatures in mid-March to late-April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density-dependent compensation, from adverse impacts of the marked inter-annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.


Assuntos
Afídeos , Animais , Mudança Climática , Dinâmica Populacional , Estações do Ano , Temperatura
2.
Oecologia ; 193(2): 249-259, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253493

RESUMO

Dispersal is a key process affecting population persistence and major factors affecting dispersal rates are the amounts, connectedness and properties of habitats in landscapes. We present new data on the butterfly Maniola jurtina in flower-rich and flower-poor habitats that demonstrates how movement and behaviour differ between sexes and habitat types, and how this effects consequent dispersal rates. Females had higher flight speeds than males, but their total time in flight was four times less. The effect of habitat type was strong for both sexes, flight speeds were ~ 2.5 × and ~ 1.7 × faster on resource-poor habitats for males and females, respectively, and flights were approximately 50% longer. With few exceptions females oviposited in the mown grass habitat, likely because growing grass offers better food for emerging caterpillars, but they foraged in the resource-rich habitat. It seems that females faced a trade-off between ovipositing without foraging in the mown grass or foraging without ovipositing where flowers were abundant. We show that taking account of habitat-dependent differences in activity, here categorised as flight or non-flight, is crucial to obtaining good fits of an individual-based model to observed movement. An important implication of this finding is that incorporating habitat-specific activity budgets is likely necessary for predicting longer-term dispersal in heterogeneous habitats, as habitat-specific behaviour substantially influences the mean (> 30% difference) and kurtosis (1.4 × difference) of dispersal kernels. The presented IBMs provide a simple method to explicitly incorporate known activity and movement rates when predicting dispersal in changing and heterogeneous landscapes.


Assuntos
Borboletas , Animais , Ecossistema , Feminino , Flores , Masculino , Movimento
3.
Proc Biol Sci ; 284(1847)2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28100819

RESUMO

A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Insetos/virologia , Rhabdoviridae , Animais , Borboletas/virologia , Ceratitis capitata/virologia , Drosophila/virologia
5.
Commun Biol ; 5(1): 143, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177761

RESUMO

Climatic anomalies are increasing in intensity and frequency due to rapid rates of global change, leading to increased extinction risk for many species. The impacts of anomalies are likely to vary between species due to different degrees of sensitivity and extents of local adaptation. Here, we used long-term butterfly monitoring data of 143 species across six European bioclimatic regions to show how species' population dynamics have responded to local or globally-calculated climatic anomalies, and how species attributes mediate these responses. Contrary to expectations, degree of apparent local adaptation, estimated from the relative population sensitivity to local versus global anomalies, showed no associations with species mobility or reproductive rate but did contain a strong phylogenetic signal. The existence of phylogenetically-patterned local adaptation to climate has important implications for forecasting species responses to current and future climatic conditions and for developing appropriate conservation practices.


Assuntos
Adaptação Fisiológica/genética , Borboletas/genética , Borboletas/fisiologia , Clima , Ecossistema , Filogenia , Distribuição Animal , Animais , Simulação por Computador , Europa (Continente) , Filogeografia
6.
Sci Total Environ ; 789: 148123, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210524

RESUMO

The COVID-19 pandemic has had severe impacts on global public health. In England, social distancing measures and a nationwide lockdown were introduced to reduce the spread of the virus. Green space accessibility may have been particularly important during this lockdown, as it could have provided benefits for physical and mental wellbeing. However, the associations between public green space use and the rate of COVID-19 transmission are yet to be quantified, and as the size and accessibility of green spaces vary within England's local authorities, the risks and benefits to the public of using green space may be context-dependent. To evaluate how green space affected COVID-19 transmission across 299 local authorities (small regions) in England, we calculated a daily case rate metric, based upon a seven-day moving average, for each day within the period June 1st - November 30th 2020 and assessed how baseline health and mobility variables influenced these rates. Next, looking at the residual case rates, we investigated how landscape structure (e.g. area and patchiness of green space) and park use influenced transmission. We first show that reducing mobility is associated with a decline in case rates, especially in areas with high population clustering. After accounting for known mechanisms behind transmission rates, we found that park use (showing a preference for park mobility) was associated with decreased residual case rates, especially when green space was low and contiguous (not patchy). Our results support that a reduction in overall mobility may be a good strategy for reducing case rates, endorsing the success of lockdown measures. However, if mobility is necessary, outdoor park use may be safer than other forms of mobility and associated activities (e.g. shopping or office-based working).


Assuntos
COVID-19 , Pandemias , Controle de Doenças Transmissíveis , Inglaterra , Humanos , SARS-CoV-2
7.
Ecol Evol ; 11(21): 14521-14539, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765123

RESUMO

The influence of large-scale variables such as climate change on phenology has received a great deal of research attention. However, local environmental factors also play a key role in determining the timing of species life cycles. Using the meadow brown butterfly Maniola jurtina as an example, we investigate how a specific habitat type, lowland calcareous grassland, can affect the timing of flight dates. Although protracted flight periods have previously been reported in populations on chalk grassland sites in the south of England, no attempt has yet been made to quantify this at a national level, or to assess links with population genetics and drought tolerance. Using data from 539 sites across the UK, these differences in phenology are quantified, and M. jurtina phenology is found to be strongly associated with both site geology and topography, independent of levels of abundance. Further investigation into aspects of M. jurtina ecology at a subset of sites finds no genetic structuring or drought tolerance associated with these same site conditions.

8.
Ecol Evol ; 10(7): 3200-3208, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273981

RESUMO

Dispersal ability is key to species persistence in times of environmental change. Assessing a species' vulnerability and response to anthropogenic changes is often performed using one of two methods: correlative approaches that infer dispersal potential based on traits, such as wingspan or an index of mobility derived from expert opinion, or a mechanistic modeling approach that extrapolates displacement rates from empirical data on short-term movements.Here, we compare and evaluate the success of the correlative and mechanistic approaches using a mechanistic random-walk model of butterfly movement that incorporates relationships between wingspan and sex-specific movement behaviors.The model was parameterized with new data collected on four species of butterfly in the south of England, and we observe how wingspan relates to flight speeds, turning angles, flight durations, and displacement rates.We show that flight speeds and turning angles correlate with wingspan but that to achieve good prediction of displacement even over 10 min the model must also include details of sex- and species-specific movement behaviors.We discuss what factors are likely to differentially motivate the sexes and how these could be included in mechanistic models of dispersal to improve their use in ecological forecasting.

9.
Data Brief ; 27: 104611, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687436

RESUMO

This Data in Brief article describes data on the movement behaviour of four species of grassland butterflies collected over three years and at four sites in southern England. The datasets consist of the movement tracks of Maniola jurtina, Aricia agestis, Pyronia tithonus, and Melanargia galathea, recorded using standard methods and presented as steps distances and turning angles. Sites consisted of nectar-rich field margins, meadows, and mown short turf grasslands with minimal flowers. In total, 783 unique movement tracks were collected. The data were used for analysing the movement behaviour of the species and for parameterising individual-based movement models.

10.
Mov Ecol ; 7: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497300

RESUMO

BACKGROUND: Understanding the factors influencing movement is essential to forecasting species persistence in a changing environment. Movement is often studied using mechanistic models, extrapolating short-term observations of individuals to longer-term predictions, but the role of weather variables such as air temperature and solar radiation, key determinants of ectotherm activity, are generally neglected. We aim to show how the effects of weather can be incorporated into individual-based models of butterfly movement thus allowing analysis of their effects. METHODS: We constructed a mechanistic movement model and calibrated it with high precision movement data on a widely studied species of butterfly, the meadow brown (Maniola jurtina), collected over a 21-week period at four sites in southern England. Day time temperatures during the study ranged from 14.5 to 31.5 °C and solar radiation from heavy cloud to bright sunshine. The effects of weather are integrated into the individual-based model through weather-dependent scaling of parametric distributions representing key behaviours: the durations of flight and periods of inactivity. RESULTS: Flight speed was unaffected by weather, time between successive flights increased as solar radiation decreased, and flight duration showed a unimodal response to air temperature that peaked between approximately 23 °C and 26 °C. After validation, the model demonstrated that weather alone can produce a more than two-fold difference in predicted weekly displacement. CONCLUSIONS: Individual Based models provide a useful framework for integrating the effect of weather into movement models. By including weather effects we are able to explain a two-fold difference in movement rate of M. jurtina consistent with inter-annual variation in dispersal measured in population studies. Climate change for the studied populations is expected to decrease activity and dispersal rates since these butterflies already operate close to their thermal optimum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA