Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775296

RESUMO

The synthetic antimicrobial peptide SET-M33 is being developed as a possible new antibacterial candidate for the treatment of multi-drug resistant bacteria. SET-M33 is a branched peptide featuring higher resistance and bioavailability than its linear analogues. SET-M33 shows antimicrobial activity against different species of multi-resistant Gram-negative bacteria, including clinically isolated strains of Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii and Escherichia coli. The secondary structure of this 40 amino acid peptide was investigated by NMR to fully characterize the product in the framework of preclinical studies. The possible presence of helixes or ß-sheets in the structure had to be explored to predict the behavior of the branched peptide in solution, with a view to designing a formulation for parenteral administration. Since the final formulation of SET-M33 will be strictly defined in terms of counter-ions and additives, we also report the studies on a new salt form, SET-M33 chloride, that retains its activity against Gram-negative bacteria and gains in solubility, with a possible improvement in the pharmacokinetic profile. The opportunity of using a chloride counter-ion is very convenient from a process development point of view and did not increase the toxicity of the antimicrobial drug.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/tratamento farmacológico , Produtos Biológicos/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/microbiologia , Produtos Biológicos/farmacologia , Composição de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Imageamento por Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
2.
Biochemistry ; 55(1): 19-28, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26618792

RESUMO

Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Regulação Alostérica , Sítios de Ligação , Motivos EF Hand , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Terciária de Proteína
3.
Bioorg Med Chem Lett ; 25(12): 2496-500, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25978964

RESUMO

Human H-PGDS has shown promise as a potential target for anti-allergic and anti-inflammatory drugs. Here we describe the discovery of a novel class of indole inhibitors, identified through focused screening of 42,000 compounds and evaluated using a series of hit validation assays that included fluorescence polarization binding, 1D NMR, ITC and chromogenic enzymatic assays. Compounds with low nanomolar potency, favorable physico-chemical properties and inhibitory activity in human mast cells have been identified. In addition, our studies suggest that the active site of hH-PGDS can accommodate larger structural diversity than previously thought, such as the introduction of polar groups in the inner part of the binding pocket.


Assuntos
Inibidores Enzimáticos/química , Indóis/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Lipocalinas/antagonistas & inibidores , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Ligação de Hidrogênio , Indóis/síntese química , Indóis/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 24(5): 1315-21, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508129

RESUMO

The identification of novel, non-purine based inhibitors of xanthine oxidase is described. After a high-throughput screening campaign, an NMR based counterscreen was used to distinguish actives, which interact with XO in a reversible manner, from assay artefacts. This approach identified pyrimidone 1 as a reversible and competitive inhibitor with good lead-like properties. A hit to lead campaign gave compound 41, a nanomolar inhibitor of hXO with efficacy in the hyperuricemic rat model after oral dosing.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Xantina Oxidase/antagonistas & inibidores , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Supressores da Gota/química , Supressores da Gota/farmacocinética , Supressores da Gota/farmacologia , Supressores da Gota/uso terapêutico , Meia-Vida , Ensaios de Triagem em Larga Escala , Hiperuricemia/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Pirimidinonas/farmacocinética , Pirimidinonas/uso terapêutico , Ratos , Relação Estrutura-Atividade , Xantina Oxidase/metabolismo
5.
Front Immunol ; 13: 900906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774785

RESUMO

Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.


Assuntos
Aquaporinas , Cardiomiopatias , Cardiopatias , Hipotermia , Nefropatias , Sepse , Animais , Aquaporinas/genética , Peróxido de Hidrogênio/metabolismo , Camundongos , Insuficiência de Múltiplos Órgãos , Sepse/complicações , Sepse/tratamento farmacológico
6.
J Mol Biol ; 316(5): 1083-99, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11884146

RESUMO

Proteins G and PAB are bacterial albumin-binding proteins expressed at the surface of group C and G streptococci and Peptostreptococcus magnus, respectively. Repeated albumin-binding domains, known as GA modules, are found in both proteins. The third GA module of protein G from the group G streptococcal strain G148 (G148-GA3) and the second GA module of protein PAB from P.magnus strain ALB8 (ALB8-GA) exhibit 59% sequence identity and both fold to form three-helix bundle structures that are very stable against thermal denaturation. ALB8-GA binds human serum albumin with higher affinity than G148-GA3, but G148-GA3 shows substantially broader albumin-binding specificity than ALB8-GA. The (15)N nuclear magnetic resonance spin relaxation measurements reported here, show that the two GA modules exhibit mobility on the picosecond-nanosecond time scale in directly corresponding regions (loops and termini). Most residues in G148-GA3 were seen to be involved in conformational exchange processes on the microsecond-millisecond time scale, whereas for ALB8-GA such motions were only identified for the beginning of helix 2 and its preceding loop. Furthermore, and more importantly, hydrogen-deuterium exchange and saturation transfer experiments reveal large differences between the two GA modules with respect to motions on the second-hour time scale. The high degree of similarity between the two GA modules with respect to sequence, structure and stability, and the observed differences in dynamics, binding affinity and binding specificity to different albumins, suggest a distinct correlation between dynamics, binding affinity and binding specificity. Finally, it is noteworthy in this context that the module G148-GA3, which has broad albumin-binding specificity, is expressed by group C and G streptococci known to infect all mammalian species, whereas P.magnus with the ALB8-GA module has been isolated only from humans.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Peptostreptococcus/química , Albumina Sérica/metabolismo , Streptococcus/química , Adaptação Fisiológica , Sequência de Aminoácidos , Anisotropia , Sítios de Ligação , Difusão , Humanos , Hidrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Peptostreptococcus/classificação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rotação , Alinhamento de Sequência , Homologia de Sequência , Streptococcus/classificação , Especificidade por Substrato , Termodinâmica
7.
Biophys J ; 89(6): 4219-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16199501

RESUMO

The influence of molecular characteristics on the mutual interaction between peptides and nonionic surfactants has been investigated by studying the effects of surfactants on amphiphilic, random copolymers of alpha-L-amino acids containing lysine residues as the hydrophilic parts. The hydrophobic residues were either phenylalanine or tyrosine. The peptide-surfactant interactions were studied by means of circular dichroism spectroscopy and binding isotherms, as well as by 1D and 2D NMR. The binding of surfactant to the peptides was found to be a cooperative process, appearing at surfactant concentrations just below the critical micellar concentration. However, a certain degree of peptide hydrophobicity is necessary to obtain an interaction with nonionic surfactant. When this prerequisite is fulfilled, the peptide mainly interacts with self-assembled, micelle-like surfactant aggregates formed onto the peptide chain. Therefore, the peptide-surfactant complex is best described in terms of a necklace model, with the peptide interacting primarily with the palisade region of the micelles via its hydrophobic side chains. The interaction yields an increased amount of alpha-helix conformation in the peptide. Surfactants that combine small headgroups with a propensity to form small, nearly spherical micelles were shown to give the largest increase in alpha-helix content.


Assuntos
Peptídeos/análise , Peptídeos/química , Tensoativos/análise , Tensoativos/química , Íons , Ligação Proteica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA