Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 157(7): 1565-76, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949969

RESUMO

Mycobacterium ulcerans, the etiological agent of Buruli ulcer, causes extensive skin lesions, which despite their severity are not accompanied by pain. It was previously thought that this remarkable analgesia is ensured by direct nerve cell destruction. We demonstrate here that M. ulcerans-induced hypoesthesia is instead achieved through a specific neurological pathway triggered by the secreted mycobacterial polyketide mycolactone. We decipher this pathway at the molecular level, showing that mycolactone elicits signaling through type 2 angiotensin II receptors (AT2Rs), leading to potassium-dependent hyperpolarization of neurons. We further validate the physiological relevance of this mechanism with in vivo studies of pain sensitivity in mice infected with M. ulcerans, following the disruption of the identified pathway. Our findings shed new light on molecular mechanisms evolved by natural systems for the induction of very effective analgesia, opening up the prospect of new families of analgesics derived from such systems.


Assuntos
Angiotensinas/metabolismo , Úlcera de Buruli/patologia , Macrolídeos/isolamento & purificação , Mycobacterium ulcerans , Analgésicos/isolamento & purificação , Animais , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Modelos Animais de Doenças , Edema/microbiologia , Humanos , Hipestesia/induzido quimicamente , Macrolídeos/química , Macrolídeos/metabolismo , Camundongos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Mol Cell Neurosci ; 115: 103659, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400333

RESUMO

Peripheral nerve trauma and regeneration are complex events, and little is known concerning how occurrences in the distal stump affect the cell body's response to injury. Intermediate filament (IF) proteins underpin cellular architecture and take part in nerve cell proliferation, differentiation and axon regeneration, but their role in these processes is not yet fully understood. The present study aimed to investigate the regulation and interrelationship of major neural IFs in adult dorsal root ganglion (DRG) neurons and satellite glial cells (SGCs) following sciatic nerve injury. We demonstrated that the expression of neural IFs in DRG neurons and SGCs after axotomy depends on vimentin activity. In intact DRGs, synemin M and peripherin proteins are detected in small neurons while neurofilament L (NFL) and synemin L characterize large neurons. Both neuronal populations are surrounded by vimentin positive- and glial fibrillary acidic protein (GFAP)-negative SGCs. In response to axotomy, synemin M and peripherin were upregulated in large wild-type DRG neurons and, to a lesser extent, in vim-/- and synm-/- DRG neurons, suggesting the role for these IFs in axon regeneration. However, an increase in the number of NFL-positive small neurons was observed in vim-/- mice, accompanied by a decrease of peripherin-positive small neurons. These findings suggest that vimentin is required for injury-induced neuronal IF remodeling. We further show that vimentin is also indispensable for nerve injury-induced GFAP upregulation in perineuronal SGCs and that inactivation of vimentin and synemin appears to accelerate the rate of DRG neurite regeneration at early stages in vitro.


Assuntos
Gânglios Espinais , Filamentos Intermediários , Animais , Axônios , Camundongos , Regeneração Nervosa , Neuroglia , Neurônios , Vimentina
3.
Pharm Res ; 38(4): 681-691, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33829340

RESUMO

PURPOSE: Current preclinical therapeutic strategies involving nanomedicine require increasingly sophisticated nanosystems and the characterization of the complexity of such nanoassemblies is becoming a major issue. Accurate characterization is often the factor that can accelerate the translational approaches of nanomedicines and their pharmaceutical development to reach the clinic faster. We conducted a case study involving the adsorption of the NFL-TBS.40-63 (NFL) peptide (derived from neurofilaments) to the surface of lipid nanocapsules (LNCs) (a combined nanosystem used to target glioblastoma cells) to develop an analytical approach combining the separation and the quantification in a single step, leading to the characterization of the proportion of free peptide and thus the proportion of peptide adsorbed to the lipid nanocapsule surface. METHODS: LNC suspensions, NFL peptide solution and LNC/NFL peptide mixtures were characterized using a Size-Exclusion Chromatography method (with a chromatographic apparatus). In addition, this method was compared to centrifugal-filtration devices, currently used in literature for this case study. RESULTS: Combining the steps for separation and characterization in one single sequence improved the accuracy and robustness of the data and led to reproducible results. Moreover the data deviation observed for the centrifugal-filtration devices demonstrated the limits for this increasingly used characterization approach, explained by the poor separation quality and highlighting the importance for the method optimization. The high potential of the technique was shown, proving that H-bond and/or electrostatic interactions mediate adsorption of the NFL peptide to the surface of LNCs. CONCLUSIONS: Used only as a characterization tool, the process using chromatographic apparatus is less time and solvent consuming than classical Size-Exclusion Chromatography columns only used for separation. It could be a promising tool for the scientific community for characterizing the interactions of other combinations of nanosystems and active biological agents.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Nanocápsulas/química , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Adsorção , Linhagem Celular Tumoral , Química Farmacêutica , Humanos , Lipídeos/química , Proteínas de Neurofilamentos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem
4.
J Neurosci Res ; 97(10): 1306-1318, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31304612

RESUMO

Neurofilaments (NFs) undergo cation-dependent phospho-mediated associations with each other and other cytoskeletal elements that support axonal outgrowth. Progressive NF-NF associations generate a resident, bundled population that undergoes exchange with transporting NFs. We examined the properties of bundled NFs. Bundles did not always display a fully linear profile but curved and twisted at various points along the neurite length. Bundles retracted faster than neurites and retracted bundles did not expand following extraction with Triton, indicating that they coiled passively rather than due to pressure from the cell. Bundles consisted of helically wound NFs, which may provide flexibility necessary for turning of growing axons during pathfinding. Interactions between NFs and other cytoskeletal elements may be disrupted en masse during neurite retraction or regionally during remodeling. It is suggested that bundles within long axons that cannot be fully retracted into the soma could provide maintain proximal support yet still allow more distal flexibility for remodeling and changing direction during pathfinding.


Assuntos
Filamentos Intermediários/fisiologia , Neuritos/fisiologia , Neurogênese/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Citoesqueleto/metabolismo , Camundongos
5.
Biochemistry ; 56(12): 1746-1756, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28290671

RESUMO

Although they play a significant part in the regulation of microtubule structure, dynamics, and function, the disordered C-terminal tails of tubulin remain invisible to experimental structural methods and do not appear in the crystallographic structures that are currently available in the Protein Data Bank. Interestingly, these tails concentrate most of the sequence variability between tubulin isotypes and are the sites of the principal post-translational modifications undergone by this protein. Using homology modeling, we developed two complete models for the human αI/ßI- and αI/ßIII-tubulin isotypes that include their C-terminal tails. We then investigated the conformational variability of the two ß-tails using long time-scale classical molecular dynamics simulations that revealed similar features, notably the unexpected presence of common anchoring regions on the surface of the tuulin dimer, but also distinctive mobility or interaction patterns, some of which could be related to the tail lengths and charge distributions. We also observed in our simulations that the C-terminal tail from the ßI isotype, but not the ßIII isotype, formed contacts in the putative binding site of a recently discovered peptide that disrupts microtubule formation in glioma cells. Hindering the binding site in the ßI isotype would be consistent with this peptide's preferential disruption of microtubule formation in glioma, whose cells overexpress ßIII, compared to normal glial cells. While these observations need to be confirmed with more intensive sampling, our study opens new perspectives for the development of isotype-specific chemotherapy drugs.


Assuntos
Antineoplásicos/química , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Tubulina (Proteína)/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
6.
J Neurosci Res ; 94(2): 139-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26566852

RESUMO

Carbocyanines are fluorescent lipophilic cationic dyes used since the early 1980s as neuronal tracers. Several applications of these compounds have been developed thanks to their low cell toxicity, lateral diffusion within the cellular membranes, and good photostability. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate (DiD) is an interesting component of this family because, in addition to the classic carbocyanine properties, it has a longer wavelength compared with its analogues. That makes DiD an excellent carbocyanine for labeling cells and tissues with significant intrinsic fluorescence. Drug encapsulation, drug delivery, and cellular transplantation are also fields using DiD-based systems where having detailed knowledge about its behavior as a single entity is important. Recently, promising studies concerned neural stem cells from the subventricular zone of the lateral ventricle in the brain (their natural niche) and their potential therapeutic use. Here, we show that DiD is able to label these stem cells in vitro and present basilar information concerning its pharmacokinetics, concentrations, and microscope protocols. Moreover, when DiD is injected in vivo in the cerebrospinal fluid present in the lateral ventricle of rat, it also labels stem cells as well as myelinated structures of the caudoputamen. This analysis provides a database to consult when planning experiments concerning DiD and neural stem cells from the subventricular zone.


Assuntos
Carbocianinas/metabolismo , Ventrículos Laterais/citologia , Bainha de Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Animais Recém-Nascidos , Carbocianinas/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Técnicas In Vitro , Ventrículos Laterais/efeitos dos fármacos , Masculino , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Biochemistry ; 54(23): 3660-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26016807

RESUMO

NFL-TBS.40-63 is a 24 amino acid peptide corresponding to the tubulin-binding site located on the light neurofilament subunit, which selectively enters glioblastoma cells, where it disrupts their microtubule network and inhibits their proliferation. We investigated its structural variability and binding modes on a tubulin heterodimer using a combination of NMR experiments, docking, and molecular dynamics (MD) simulations. Our results show that, while lacking a stable structure, the peptide preferentially binds on a specific single site located near the ß-tubulin C-terminal end, thus giving us precious hints regarding the mechanism of action of the NFL-TBS.40-63 peptide's antimitotic activity at the molecular level.


Assuntos
Modelos Moleculares , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Tubulina (Proteína)/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Solubilidade , Tubulina (Proteína)/metabolismo
8.
Development ; 138(7): 1329-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21385763

RESUMO

Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation.


Assuntos
Citoesqueleto/metabolismo , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Axônios/metabolismo , Western Blotting , Células Cultivadas , Citoesqueleto/genética , Imunofluorescência , Marcha/genética , Expressão Gênica , Camundongos , Camundongos Knockout , Bainha de Mielina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
9.
J Neurosci Res ; 92(2): 243-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24327347

RESUMO

During multiple sclerosis (MS), the main axon cystoskeleton proteins, neurofilaments (NF), are altered, and their release into the cerebrospinal fluid correlates with disease severity. The role of NF in the extraaxonal location is unknown. Therefore, we tested whether synthetic peptides corresponding to the tubulin-binding site (TBS) sequence identified on light NF chain (NFL-TBS.40-63) and keratin (KER-TBS.1-24), which could be released during MS, modulate remyelination in vitro. Biotinylated NFL-TBS.40-63, NFL-Scramble2, and KER-TBS.1-54 (1-100 µM, 24 hr) were added to rat oligodendrocyte (OL) and astrocyte (AS) cultures, grown in chemically defined medium. Proliferation and differentiation were characterized by using specific antibodies (A2B5, CNP, MBP, GFAP) and compared with untreated cultures. Lysophosphatidyl choline (LPC; 2 × 10(-5) M) was used to induce OL death and to test the effects of TBS peptides under these conditions. NFL-TBS.40-63 significantly increased OL differentiation and maturation, with more CNP(+) and MBP(+) cells characterized by numerous ramified processes, along with myelin balls. When OL were challenged with LPC, concomitant treatment with NFL-TBS.40-63 rescued more than 50% of OL compared with cultures treated with LPC only. Proliferation of OL progenitors was not affected, nor were AS proliferation and differentiation. NFL-TBS.40-63 peptide induces specific effects in vitro, increasing OL differentiation and maturation without altering AS fate. In addition, it partially protects OL from demyelinating injury. Thus release of NFL-TBS.40-63 caused by axonal damage in vivo could improve repair through increased OL differentiation, which is a prerequisite for remyelination.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Doenças Desmielinizantes/metabolismo , Proteínas de Neurofilamentos/farmacologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Astrócitos , Técnicas de Cocultura , Imuno-Histoquímica , Lisofosfatidilcolinas/toxicidade , Oligodendroglia/metabolismo , Ratos , Ratos Wistar
10.
Histochem Cell Biol ; 140(1): 13-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23749407

RESUMO

Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.


Assuntos
Filamentos Intermediários/patologia , Sistema Nervoso/patologia , Humanos , Sistema Nervoso/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia
11.
Mol Ther ; 20(7): 1367-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22491214

RESUMO

Despite aggressive treatment regimes, glioma remains a largely fatal disease. Current treatment limitations are attributed to the precarious locations within the brain where such tumors grow, their highly infiltrative nature precluding complete resection and lack of specificity among agents capable of attenuating their growth. Here, we show that in vitro, glioma cells of diverse origins internalize a peptide encompassing a tubulin-binding site (TBS) on the neurofilament light protein. The internalized peptide disrupts the microtubule network, inhibits migration and proliferation, and leads to apoptosis. Using an intracerebral transplant model, we show that most, if not all, of these responses to peptide exposure also occur in vivo. Notably, a single intratumor injection significantly attenuates tumor growth, while neither peptide uptake nor downstream consequences are observed elsewhere in the host nervous system. Such preferential uptake suggests that the peptide may have potential as a primary or supplementary glioblastoma treatment modality by exploiting its autonomous microtubule-disrupting activity or engaging its capacity to selectively target glioma cells with other cell-disrupting cargos.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Proteínas de Neurofilamentos/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Proteínas de Neurofilamentos/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Ligação Proteica , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
12.
Int J Pharm ; 646: 123421, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37722495

RESUMO

Glioblastoma is the most common and aggressive brain tumor. Current treatments do not allow to cure the patients. This is partly due to the blood-brain barrier (BBB), which limits the delivery of drugs to the pathological site. To overcome this, we developed liposomes functionalized with a neurofilament-derived peptide, NFL-TBS.40-63 (NFL), known for its highly selective targeting of glioblastoma cells. First, in vitro BBB model was developed to check whether the NFL can also promote barrier crossing in addition to its active targeting capacity. Permeability experiments showed that the NFL peptide was able to cross the BBB. Moreover, when the BBB was in a pathological situation, i.e., an in vitro blood-brain tumor barrier (BBTB), the passage of the NFL peptide was greater while maintaining its glioblastoma targeting capacity. When the NFL peptide was associated to liposomes, it enhanced their ability to be internalized into glioblastoma cells after passage through the BBTB, compared to liposomes without NFL. The cellular uptake of liposomes was limited in the endothelial cell monolayer in comparison to the glioblastoma one. These data indicated that the NFL peptide is a promising cell-penetrating peptide tool when combined with drug delivery systems for the treatment of glioblastoma.

13.
Biomater Adv ; 153: 213549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453243

RESUMO

The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanocápsulas , Camundongos , Humanos , Animais , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Hidrogéis/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Gencitabina , Sistemas de Liberação de Medicamentos , Lipídeos/química , Lipídeos/uso terapêutico
14.
Am J Cancer Res ; 13(4): 1425-1442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168329

RESUMO

Glioblastoma is an aggressive brain tumor with a poor prognosis. Glioblastoma Stem Cells (GSC) are involved in glioblastoma resistance and relapse. Effective glioblastoma treatment must include GSC targeting strategy. Robust and well defined in vitroGSC models are required for new therapies evaluation. In this study, we extensively characterized 4 GSC models obtained by dedifferentiation of commercially available glioblastoma cell lines and compared them to 2 established patient derived GSC lines (Brain Tumor Initiating Cells). Dedifferentiated cells formed gliospheres, typical for GSC, with self-renewal ability. Gene expression and protein analysis revealed an increased expression of several stemness associated markers such as A2B5, integrin α6, Nestin, SOX2 and NANOG. Cells were oriented toward a mesenchymal GSC phenotype as shown by elevated levels of mesenchymal and EMT related markers (CD44, FN1, integrin α5). Dedifferentiated GSC were similar to BTIC in terms of size and heterogeneity. The characterization study also revealed that CXCR4 pathway was activated by dedifferentiation, emphasizing its role as a potential therapeutic target. The expression of resistance-associated markers and the phenotypic diversity of the 4 GSC models obtained by dedifferentiation make them relevant to challenge future GSC targeting therapies.

15.
Food Chem Toxicol ; 170: 113464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228901

RESUMO

Pesticides products are widely used to increase food productivity and to decrease food-borne diseases. Fludioxonil is a worldwide used phenylpyrrol fungicide. This pesticide can induce serious effects on human health especially on nervous system. We assessed the role of oxidative stress in the toxicity of Fludioxonil and examined its apoptotic mechanism of action on rat neural cells (F98). We have shown that the increasing concentration of Fludioxonil reduces the percentage of living F98 cells viability and increases the levels of reactive oxygen species and malondialdheydes. The reduction of cells proliferation was demonstrated with an accumulation in G2/M phase. The immunocytochemical analysis has shown that Fludioxonil induced the disruption of the cytoskeleton. DNA damage was also provoked in a concentration dependent manner as illustrated by the comet assay. The depolarization of the mitochondria and the positive Annexin V FITC-PI confirmed the apoptosis induced by this fungicide. Interestingly, the F98 cells viability and ROS levels were restored with N-acetylcysteine pre-treatment. These results highlight the involvement of oxidative stress in the toxicity induced by this fungicide, and that free radicals generation plays a key role in the induction of apoptosis probably induced via the mitochondrial pathway.


Assuntos
Fungicidas Industriais , Glioma , Praguicidas , Humanos , Ratos , Animais , Fungicidas Industriais/metabolismo , Praguicidas/metabolismo , Apoptose , Dano ao DNA , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Glioma/metabolismo , Citoesqueleto
16.
Chemosphere ; 288(Pt 3): 132640, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695486

RESUMO

Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to investigate the possible toxic outcomes of Epoxiconzole, a triazole fungicide, on the brain of adult rats in vivo, and in vitro on neural stem cells derived from the subventricular zone of newborn Wistar rats. Our results revealed that oral exposure to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing respectively NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days caused a considerable generation of oxidative stress in adult rat brain tissue. Furthermore, a significant augmentation in lipid peroxidation and protein oxidation has been found. Moreover, it induced an elevation of DNA fragmentation as assessed by the Comet assay. Indeed, EPX administration impaired activities of antioxidant enzymes and inhibited AChE activity. Concomitantly, this pesticide produced histological alterations in the brain of adult rats. Regarding the embryonic neural stem cells, we demonstrated that the treatment by EPX reduced the viability of cells with an IC50 of 10 µM. It also provoked the reduction of cell proliferation, and EPX triggered arrest in G1/S phase. The neurosphere formation and self-renewal capacity was reduced and associated with decreased differentiation. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. Our findings also showed that EPX induced apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspase-3. In addition, EPX promoted ROS production in neural stem cells. Interestingly, the pretreatment of neural stem cells with the N-acetylcysteine (ROS scavenger) attenuated EPX-induced cell death, disruption of neural stem cells properties, ROS generation and apoptosis. Thus, the use of this hazardous material should be restricted and carefully regulated.


Assuntos
Células-Tronco Neurais , Triazóis , Animais , Apoptose , Encéfalo , Compostos de Epóxi , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Triazóis/toxicidade
17.
Nanoscale Adv ; 4(14): 3010-3022, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133522

RESUMO

This study promotes an innovative synthesis of a nanotheragnostic scaffold capable of targeting and destroying pancreatic cancer cells (PDAC) using the Biotinylated NFL-TBS.40-63 peptide (BIOT-NFL), known to enter various glioblastoma cancer cells (GBM) where it specifically destroys their microtubule network. This recently proposed methodology (P7391FR00-50481 LIV) applied to other peptides VIM (Vimentin) and TAT (Twin-Arginine Translocation) (CPP peptides) has many advantages, such as targeted selective internalization and high stability under experimental conditions, modulated by steric and chemical configurations of peptides. The successful interaction of peptides on gold surfaces has been confirmed by UV-visible, dynamic light scattering (DLS), Zeta potential (ZP) and Raman spectroscopy analyses. The cellular internalization in pancreatic ductal adenocarcinoma (PDAC; MIA PACA-2) and GBM (F98) cells was monitored by transmission electron microscopy (TEM) and showed a better cellular internalization in the presence of peptides with gold nanoparticles. In this work, we also evaluated the power of these hybrid peptide-nanoparticles as photothermal agents after cancer cell internalization. These findings envisage novel perspectives for the development of high peptide-nanotheragnostics.

18.
RSC Adv ; 12(19): 11708-11714, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35432942

RESUMO

Glioblastoma multiforme (GBM) is the most malignant primary brain tumor of the central nervous system. Despite advances in therapy, it remains largely untreatable, in part due to the low permeability of chemotherapeutic drugs across the blood-brain barrier (BBB) which significantly compromises their effectiveness. To circumvent the lack of drug efficiency, we designed multifunctional nanoparticles based on porous silicon. Herein, we propose an innovative synthesis technique for porous silicon nanorods (pSiNRs) with three-dimensional (3D) shape-controlled nanostructure. In order to achieve an efficient administration and improved treatment against GBM cells, a porous silicon nanoplatform is designed with magnetic guidance, fluorescence tracking and a cell-penetrating peptide (CPP). A NeuroFilament Light (NFL) subunit derived 24 amino acid tubulin binding site peptide called NFL-TBS.40-63 peptide or NFL-peptide was reported to preferentially target human GBM cells compared to healthy cells. Motivated by this approach, we investigated the use of magnetic-pSiNRs covered with superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic guidance, then decorated with the NFL-peptide to facilitate targeting and enhance internalization into human GBM cells. Unexpectedly, under confocal microscope imaging, the internalized multifunctional nanoparticles in GBM cells induce a remarkable exaltation of green fluorescence instead of the red native fluorescence from the dye due to a possible Förster resonance energy transfer (FRET). In addition, we showed that the uptake of NFL-peptide decorated magnetic-pSiNRs was preferential towards human GBM cells. This study presents the fabrication of magnetic-pSiNRs decorated with the NFL-peptide, which act as a remarkable candidate to treat brain tumors. This is supported by in vitro results and confocal imaging.

19.
ACS Pharmacol Transl Sci ; 5(12): 1267-1278, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36524008

RESUMO

The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.

20.
J Cell Sci ; 122(Pt 19): 3579-86, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19737816

RESUMO

The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesin and microtubules (MTs). Bundled NFs transport substantially slower than the surrounding individual NFs and might represent a resident population that stabilizes axons and undergoes replacement by individual NFs. To examine this possibility, fractions enriched in bundled NFs and individual NFs were generated from mice and NB2a/d1 cells by sedimentation of cytoskeletons over a sucrose cushion. More kinesin was recovered within individual versus bundled NF fractions. Individual but not bundled NFs aligned with purified MTs under cell-free conditions. The percentage of NFs that aligned with MTs was increased by the addition of kinesin, and inhibited by anti-kinesin antibodies. Bundles dissociated following incubation with EGTA or alkaline phosphatase, generating individual NFs that retained or were depleted of phospho-epitopes, respectively. These dissociated NFs aligned with MTs at a level identical to those originally isolated as individual NFs regardless of phosphorylation state. EGTA-mediated dissociation of bundles was prevented and reversed by excess Ca(2+), whereas individual NFs did not associate in the presence of excess Ca(2+). These findings confirm that bundling competes with NF-MT association, and provide a mechanism by which C-terminal NF phosphorylation might indirectly contribute to the observed slowing in axonal transport of phospho-NFs.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Neurofilamentos/metabolismo , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Feminino , Filamentos Intermediários/metabolismo , Masculino , Camundongos , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA