RESUMO
The main objective of this study is to compare the quality characteristics of the sunflower oils bleached with microwave and industrial techniques. The bleaching efficiencies of microwave and industrial bleaching methods were found as 83.76% and 85.68%, respectively. The totox values of bleached oil were found as 22.39 and 18.86 in microwave and industrial bleaching, respectively. The free fatty acid content was almost not changed with microwave bleaching, it was decreased by the industrial bleaching. No significant difference was reported in tocopherol content and sterol composition of oil after both industrial and microwave methods. The amount of clay and the bleaching time were reduced by 50% and 73%, respectively in microwave bleaching. The possibility of the repetitive use of bleaching clay was also evaluated and it was found that the clay used in microwave bleaching was efficient at least twice for bleaching of sunflower oil.
Assuntos
Micro-Ondas , Óleos de Plantas , Ácidos Graxos , Óleo de Girassol , Tocoferóis , Vitamina ERESUMO
The objective of this research was to synthesize and characterize a novel modified lipid which is composed of mainly oleic acid at sn-2 position and a hydrophobic essential amino acid derivative (N-acetyl-l-leucine) at sn-1(3) or sn-1, 3 positions. LC-MS-MS analysis indicated that the target modified lipid structure was obtained at the end of the developed reaction. Response surface methodology was applied to enhance a reliable empirical model for prediction and to optimize reaction conditions: reaction time (8 to 24 hr), reaction temperature (40 to 55 °C), and enzyme load (15 to 30 wt%). The percentage of total reaction products was found to be 28.5 at the optimum conditions of 54 °C, 8 hr and 15% (by mass) enzyme load. This result is closely correlated to the predicted highest total reaction product (29.3%) obtained by response surface methodology. The physical and thermal characteristics of the modified lipid and refined olive pomace oil were compared and found to be similar. Caloric value of modified lipid was decreased by 18.65% compared to that of refined olive pomace oil. A novel modified lipid which may have potential uses in healthy food industries was successfully produced with the incorporation of N-acetyl-l-leucine to 2-monoacylglycerol. PRACTICAL APPLICATION: A novel modified lipid was synthesized by enzymatic incorporation of a "hydrophobic and essential amino acid derivative" into 2-monoacylglycerol. This modified lipid contains mainly oleic acid at sn-2 position and N-acetyl-l-leucine at sn-1,3 positions. The product behaved as an oil above 10 °C. Caloric value of the novel oil-like product was reduced by 18.65%. The modified lipid may have the potential for replacement with the oil in food products such as margarine, shortenings, salad dressing, and mayonnaise.
Assuntos
Leucina/análogos & derivados , Monoglicerídeos/química , Azeite de Oliva/química , Esterificação , Leucina/química , Lipase/metabolismo , Espectrometria de Massas , Estrutura Molecular , Ácido Oleico/químicaRESUMO
2-Monoacylglycerols (2-MAG) with a high content of oleic acid at sn-2 position was synthesized by enzymatic ethanolysis of refined olive pomace oil, which is a byproduct of olive oil processing. Six lipases from different microbial sources were used in the synthesis of 2-MAG. Immobilized lipase from Candida antarctica gave the highest product yield among the selected lipases. Response surface methodology was applied to optimize reaction conditions; time (4 to 10 h), temperature (45 to 60 °C), enzyme load (10 to 18 wt%), and ethanol:oil molar ratio (30:1 to 60:1). The predicted highest 2-MAG yield (84.83%) was obtained at 45 °C using 10 (wt%) enzyme load and 50:1 ethanol:oil molar ratio for 5 h reaction time. Experiments to confirm the predicted results at optimum conditions presented a 2-MAG yield of 82.54%. The purification yield (g 2-MAG extracted/100 g of total product) was 80.10 and 69.00 for solvent extraction and low-temperature crystallization, respectively. The purity of the synthesized 2-MAG was found to be higher than 96%.
Assuntos
Candida/enzimologia , Lipase/metabolismo , Monoglicerídeos/biossíntese , Olea/química , Ácido Oleico/metabolismo , Azeite de Oliva/metabolismo , Etanol/química , Humanos , Solventes/química , TemperaturaRESUMO
Refined olive pomace oil (ROPO) was utilized as a source oil for production of cocoa butter-like fat. Immobilized sn-1,3 specific lipase catalyzed acidolysis of ROPO with palmitic (PA) and stearic (SA) acids was performed in a laboratory scale packed-bed reactor. Effect of reactor conditions on product formation was studied at various substrate mole ratios (ROPO:PA:SA; 1:1:1, 1:1:3, 1:3:3, 1:2:6), enzyme loads (10%, 20%, 40%), substrate flow rates (1.5, 4.5, 7.5, 15 ml/min) and solvent amounts (150, 400 ml). The highest yield (10.9% POP, 19.7% POS and 11.2% SOS) was obtained at 40% enzyme load, 1:2:6 substrate mole ratio, 45 degrees C, 7.5 ml/min substrate flow rate, 150 ml solvent and 3h reaction time. The melting profile and SFC of the product were comparable to those of CB. Polarized light microscope (PLM) images showed no drastic changes in polymorphic behavior between CB and product.
Assuntos
Reatores Biológicos , Gorduras na Dieta/síntese química , Gorduras/síntese química , Lipase/química , Óleos de Plantas/química , Enzimas Imobilizadas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Azeite de OlivaRESUMO
A cocoa butter (CB)-like fat was produced in a packed bed enzyme reactor using sn-1,3 specific lipase, and its blends with CB were prepared at different ratios (CB: CB-like fat; 100: 0, 90: 10, 80: 20, 70: 30, 60: 40, 50: 50, 0: 100). The oxidation kinetics of CB: CB-like fat blends was studied by differential scanning calorimeter (DSC). Samples were heated in DSC at different temperatures (130, 140, 150, 160 degrees C) under 100 mL/min oxygen. From DSC exotherms, oxidation induction times (OIT) were determined and used for the assessment of the oxidative stabilities of the blends. Oxidation kinetics parameters (activation energy, E(a); preexponential factor, Z; and oxidation rate constant, k) were calculated. In general, it has been observed that above 110 degrees C increasing the ratio of CB-like fat in the blend increased the k value with increasing temperature. It has been observed that for all blends the increase in k value with temperature was significant (P < 0.05). Increasing CB-like fat ratio in the blend decreased the content of major TAGs (1,3-dipalmitoyl-2-oleoyl-glycerol [POP]; 1[3]-palmitoyl-3[1]stearoyl-2-oleoyl-glycerol [POS]; 1,3-distearoyl-2-oleoyl-glycerol [SOS]), and decreased the oxidative stability of the blends.
Assuntos
Gorduras na Dieta/administração & dosagem , Óleos de Plantas/metabolismo , Antioxidantes/análise , Varredura Diferencial de Calorimetria , Gorduras na Dieta/análise , Gorduras na Dieta/metabolismo , Estabilidade de Medicamentos , Temperatura Alta , Cinética , Lipase/metabolismo , Azeite de Oliva , Oxirredução , Termodinâmica , Tocoferóis/análise , Triglicerídeos/análiseRESUMO
Enzymatic esterification of free fatty acids of olive pomace oil with glycerol was investigated. The esterification reaction was carried out in the absence and presence of glycerol (glycerol to free fatty acids (FFA) molar ratio of 1/3 and 1/6). In the absence of glycerol, the FFA concentration decreased from 32 to 21% while the triglyceride concentration increased from 33 to 40% after of 8 h of reaction time. The most significant decrease in FFAs and increase in triglycerides was observed at the limiting concentration of glycerol (glycerol to FFA molar ratio of 1/3). The FFA concentration decreased to 2.5% and the triglyceride concentration increased up to 78%. The change in both FFA and triglyceride concentrations was found to be statistically significant (P < 0.05).