RESUMO
CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.
Assuntos
Adenocarcinoma/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interleucinas/imunologia , Neoplasias Pulmonares/imunologia , Animais , Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
The peripheral T cell repertoire of healthy individuals contains self-reactive T cells1,2. Checkpoint receptors such as PD-1 are thought to enable the induction of peripheral tolerance by deletion or anergy of self-reactive CD8 T cells3-10. However, this model is challenged by the high frequency of immune-related adverse events in patients with cancer who have been treated with checkpoint inhibitors11. Here we developed a mouse model in which skin-specific expression of T cell antigens in the epidermis caused local infiltration of antigen-specific CD8 T cells with an effector gene-expression profile. In this setting, PD-1 enabled the maintenance of skin tolerance by preventing tissue-infiltrating antigen-specific effector CD8 T cells from (1) acquiring a fully functional, pathogenic differentiation state, (2) secreting significant amounts of effector molecules, and (3) gaining access to epidermal antigen-expressing cells. In the absence of PD-1, epidermal antigen-expressing cells were eliminated by antigen-specific CD8 T cells, resulting in local pathology. Transcriptomic analysis of skin biopsies from two patients with cutaneous lichenoid immune-related adverse events showed the presence of clonally expanded effector CD8 T cells in both lesional and non-lesional skin. Thus, our data support a model of peripheral T cell tolerance in which PD-1 allows antigen-specific effector CD8 T cells to co-exist with antigen-expressing cells in tissues without immunopathology.
Assuntos
Antígenos , Linfócitos T CD8-Positivos , Tolerância Imunológica , Receptor de Morte Celular Programada 1 , Pele , Animais , Humanos , Camundongos , Antígenos/imunologia , Biópsia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Epiderme/imunologia , Epiderme/metabolismo , Perfilação da Expressão Gênica , Líquen Plano/imunologia , Líquen Plano/patologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Pele/citologia , Pele/imunologia , Pele/metabolismo , Pele/patologiaRESUMO
Coarse-graining is commonly used to decrease the computational cost of simulations. However, coarse-grained models are also considered to have lower transferability, with lower accuracy for systems outside the original scope of parametrization. Here, we benchmark a bead-necklace model and a modified Martini 2 model, both coarse-grained models, for a set of intrinsically disordered proteins, with the different models having different degrees of coarse-graining. The SOP-IDP model has earlier been used for this set of proteins; thus, those results are included in this study to compare how models with different levels of coarse-graining compare. The sometimes naive expectation of the least coarse-grained model performing best does not hold true for the experimental pool of proteins used here. Instead, it showed the least good agreement, indicating that one should not necessarily trust the otherwise intuitive notion of a more advanced model inherently being better in model choice.
Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação por ComputadorRESUMO
The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.
Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Humanos , Ferramenta de Busca , Proteína Supressora de Tumor p53/químicaRESUMO
The persistent murine norovirus strain MNVCR6 is a model for human norovirus and enteric viral persistence. MNVCR6 causes chronic infection by directly infecting intestinal tuft cells, rare chemosensory epithelial cells. Although MNVCR6 induces functional MNV-specific CD8+ T cells, these lymphocytes fail to clear infection. To examine how tuft cells promote immune escape, we interrogated tuft cell interactions with CD8+ T cells by adoptively transferring JEDI (just EGFP death inducing) CD8+ T cells into Gfi1b-GFP tuft cell reporter mice. Unexpectedly, some intestinal tuft cells partially resisted JEDI CD8+ T cell-mediated killing-unlike Lgr5+ intestinal stem cells and extraintestinal tuft cells-despite seemingly normal antigen presentation. When targeting intestinal tuft cells, JEDI CD8+ T cells predominantly adopted a T resident memory phenotype with decreased effector and cytotoxic capacity, enabling tuft cell survival. JEDI CD8+ T cells neither cleared nor prevented MNVCR6 infection in the colon, the site of viral persistence, despite targeting a virus-independent antigen. Ultimately, we show that intestinal tuft cells are relatively resistant to CD8+ T cells independent of norovirus infection, representing an immune-privileged niche that can be leveraged by enteric microbes.
Assuntos
Linfócitos T CD8-Positivos , Norovirus , Camundongos , Humanos , Animais , Células em Tufo , Norovirus/fisiologia , Privilégio Imunológico , IntestinosRESUMO
Intrinsically disordered proteins (IDPs) have a broad energy landscape and consequently sample many different conformations in solution. The innate flexibility of IDPs is exploited in their biological function, and in many instances allows a single IDP to regulate a range of processes in vivo. Due to their highly flexible nature, characterizing the structural properties of IDPs is not straightforward. Often solution-based methods such as Nuclear Magnetic Resonance (NMR), Förster Resonance Energy Transfer (FRET), and Small-Angle X-ray Scattering (SAXS) are used. SAXS is indeed a powerful technique to study the structural and conformational properties of IDPs in solution, and from the obtained SAXS spectra, information about the average size, shape, and extent of oligomerization can be determined. In this chapter, we will introduce model-free methods that can be used to interpret SAXS data and introduce methods that can be used to interpret SAXS data beyond analytical models, for example, by using atomistic and different levels of coarse-grained models in combination with molecular dynamics (MD) and Monte Carlo simulations.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , Simulação de Dinâmica MolecularRESUMO
Intrinsically disordered proteins (IDPs) are proteins that, in comparison with globular/structured proteins, lack a distinct tertiary structure. Here, we use the model IDP, Histatin 5, for studying its dynamical properties under self-crowding conditions with quasi-elastic neutron scattering in combination with full atomistic molecular dynamics (MD) simulations. The aim is to determine the effects of crowding on the center-of-mass diffusion as well as the internal diffusive behavior. The diffusion was found to decrease significantly, which we hypothesize can be attributed to some degree of aggregation at higher protein concentrations, (≥100 mg/mL), as indicated by recent small-angle X-ray scattering studies. Temperature effects are also considered and found to, largely, follow Stokes-Einstein behavior. Simple geometric considerations fail to accurately predict the rates of diffusion, while simulations show semiquantitative agreement with experiments, dependent on assumptions of the ratio between translational and rotational diffusion. A scaling law that previously was found to successfully describe the behavior of globular proteins was found to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations show that the width of the distribution with respect to diffusion is not a simplistic mirroring of the distribution of radius of gyration, hence, displaying the particular features of IDPs that need to be accounted for.
Assuntos
Proteínas Intrinsicamente Desordenadas , Histatinas , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Nêutrons , Conformação Proteica , Análise EspectralRESUMO
Kras-driven lung adenocarcinoma (LUAD) is the most common lung cancer. A significant fraction of patients with Kras-driven LUAD respond to immunotherapy, but mechanistic studies of immune responses against LUAD have been limited because of a lack of immunotherapy-responsive models. We report the development of the immunogenic KP × NINJA (inversion inducible joined neoantigen) (KP-NINJA) LUAD model. This model allows temporal uncoupling of antigen and tumor induction, which allows one to wait until after infection-induced inflammation has subsided to induce neoantigen expression by tumors. Neoantigen expression is restricted to EPCAM+ cells in the lung and expression of neoantigen was more consistent between tumors than when neoantigens were encoded on lentiviruses. Moreover, tumors were infiltrated by tumor-specific CD8 T cells. Finally, LUAD cell lines derived from KP-NINJA mice were immunogenic and responded to immune checkpoint therapy (anti-PD1 and anti-CTLA4), providing means for future studies into the immunobiology of therapeutic responses in LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Linfócitos T CD8-Positivos , Anticorpos/metabolismoRESUMO
"Stem-like" TCF1+ CD8+ T (TSL) cells are necessary for long-term maintenance of T cell responses and the efficacy of immunotherapy, but, as tumors contain signals that should drive T cell terminal differentiation, how these cells are maintained in tumors remains unclear. In this study, we found that a small number of TCF1+ tumor-specific CD8+ T cells were present in lung tumors throughout their development. Yet, most intratumoral T cells differentiated as tumors progressed, corresponding with an immunologic shift in the tumor microenvironment (TME) from "hot" (T cell inflamed) to "cold" (nonT cell inflamed). By contrast, most tumor-specific CD8+ T cells in tumor-draining lymph nodes (dLNs) had functions and gene expression signatures similar to TSL from chronic lymphocytic choriomeningitis virus infection, and this population was stable over time despite the changes in the TME. dLN T cells were the developmental precursors of, and were clonally related to, their more differentiated intratumoral counterparts. Our data support the hypothesis that dLN T cells are the developmental precursors of the TCF1+ T cells in tumors that are maintained by continuous migration. Last, CD8+ T cells similar to TSL were also present in LNs from patients with lung adenocarcinoma, suggesting that a similar model may be relevant in human disease. Thus, we propose that the dLN TSL reservoir has a critical function in sustaining antitumor T cells during tumor development and in protecting them from the terminal differentiation that occurs in the TME.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Linfonodos/imunologia , Animais , Feminino , Imunoterapia , Neoplasias Pulmonares/terapia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologiaRESUMO
Intrinsically disordered proteins (IDP) are proteins that sample a heterogeneous ensemble of conformers in solution. An estimated 25-30% of all eukaryotic proteins belong to this class. In vivo, IDPs function under conditions that are highly crowded by other biological macromolecules. Previous research has highlighted that the presence of crowding agents can influence the conformational ensemble sampled by IDPs, resulting in either compaction or expansion. The effects of self-crowding of the disordered protein Histatin 5 has, in an earlier study, been found to have limited influence on the conformational ensemble. In this study, it is examined whether the short chain length of Histatin 5 can explain the limited effects of crowding observed, by introducing (Histatin 5)2, a tandem repeat of Histatin 5. By utilizing small-angle X-ray scattering, it is shown that the conformational ensemble is conserved at high protein concentrations, in resemblance with Histatin 5, although with a lowered protein concentration at which aggregation arises. Under dilute conditions, atomistic molecular dynamics and coarse-grained Monte Carlo simulations, as well as an established scaling law, predicted more extended conformations than indicated by experimental data, hence implying that (Histatin 5)2 does not behave as a self-avoiding random walk.
Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação de Dinâmica Molecular , Método de Monte Carlo , Conformação ProteicaRESUMO
Intrinsically disordered proteins (IDPs) adopt heterogeneous conformational ensembles in solution. The properties of the conformational ensemble are dependent upon the solution conditions, including the presence of ions, temperature, and crowding, and often directly impact biological function. Many in vitro investigations focus on the properties of IDPs under dilute conditions, rather than the crowded environment found in vivo. Due to their heterogeneous nature, the study of IDPs under crowded conditions is challenging both experimentally and computationally. Despite this, such studies are worth pursuing due to the insight gained into biologically relevant phenomena. Here, we study the highly charged IDP Histatin 5 under self-crowded conditions in low and high salt conditions. A combination of small-angle X-ray scattering and different simulation models, spanning a range of computational complexity and detail, is used. Most models are found to have limited application when compared to results from experiments. The best performing model is the highly coarse-grained, bead-necklace model. This model shows that Histatin 5 has a conserved radius of gyration and a decreasing flexibility with increasing protein concentration. Due to its computational efficiency, we propose that it is a suitable model to study crowded IDP solutions, despite its simplicity.
Assuntos
Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Espalhamento a Baixo Ângulo , Difração de Raios X , Biologia Computacional , SoluçõesRESUMO
Maintaining the diversity and constant numbers of naïve T cells throughout the organism's lifetime is necessary for efficient immune responses. Naïve T cell homeostasis, which consists of prolonged survival, occasional proliferation and enforcement of quiescence, is tightly regulated by multiple signaling pathways which are in turn controlled by various transcription factors. However, full understanding of the molecular mechanisms underlying the maintenance of the peripheral T cell pool has not been achieved. In the present study, we demonstrate that T cell-specific deficiency in let-7 miRNAs results in peripheral T cell lymphopenia resembling that of Dicer1 knockout mice. Deletion of let-7 leads to profound T cell apoptosis while overexpression prevents it. We further show that in the absence of let-7, T cells cannot sustain optimal levels of the pro-survival factor Bcl2 in spite of the intact IL-7 signaling, and re-expression of Bcl2 in let-7 deficient T cells completely rescues the survival defect. Thus, we have uncovered a novel let-7-dependent mechanism of post-transcriptional regulation of naïve T cell survival in vivo.
Assuntos
MicroRNAs/imunologia , Linfócitos T/imunologia , Animais , RNA Helicases DEAD-box/genética , Linfonodos/citologia , Camundongos Knockout , MicroRNAs/genética , Ribonuclease III/genéticaRESUMO
The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.