Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Comput Biol ; 19(10): e1011571, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844124

RESUMO

The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Modelos Teóricos
2.
J Comput Neurosci ; 50(2): 241-249, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182268

RESUMO

An isotropic dynamical system is one that looks the same in every direction, i.e., if we imagine standing somewhere within an isotropic system, we would not be able to differentiate between different lines of sight. Conversely, anisotropy is a measure of the extent to which a system deviates from perfect isotropy, with larger values indicating greater discrepancies between the structure of the system along its axes. Here, we derive the form of a generalised scalable (mechanically similar) discretized field theoretic Lagrangian that allows for levels of anisotropy to be directly estimated via timeseries of arbitrary dimensionality. We generate synthetic data for both isotropic and anisotropic systems and, by using Bayesian model inversion and reduction, show that we can discriminate between the two datasets - thereby demonstrating proof of principle. We then apply this methodology to murine calcium imaging data collected in rest and task states, showing that anisotropy can be estimated directly from different brain states and cortical regions in an empirical in vivo biological setting. We hope that this theoretical foundation, together with the methodology and publicly available MATLAB code, will provide an accessible way for researchers to obtain new insight into the structural organization of neural systems in terms of how scalable neural regions grow - both ontogenetically during the development of an individual organism, as well as phylogenetically across species.


Assuntos
Encéfalo , Modelos Neurológicos , Animais , Anisotropia , Teorema de Bayes , Cabeça , Camundongos
3.
PLoS Comput Biol ; 16(5): e1007865, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365069

RESUMO

In contrast to the symmetries of translation in space, rotation in space, and translation in time, the known laws of physics are not universally invariant under transformation of scale. However, a special case exists in which the action is scale invariant if it satisfies the following two constraints: 1) it must depend upon a scale-free Lagrangian, and 2) the Lagrangian must change under scale in the same way as the inverse time, [Formula: see text]. Our contribution lies in the derivation of a generalised Lagrangian, in the form of a power series expansion, that satisfies these constraints. This generalised Lagrangian furnishes a normal form for dynamic causal models-state space models based upon differential equations-that can be used to distinguish scale symmetry from scale freeness in empirical data. We establish face validity with an analysis of simulated data, in which we show how scale symmetry can be identified and how the associated conserved quantities can be estimated in neuronal time series.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Animais , Macaca , Imageamento por Ressonância Magnética , Camundongos
4.
PLoS Comput Biol ; 16(12): e1008448, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33259483

RESUMO

The propagation of epileptic seizure activity in the brain is a widespread pathophysiology that, in principle, should yield to intervention techniques guided by mathematical models of neuronal ensemble dynamics. During a seizure, neural activity will deviate from its current dynamical regime to one in which there are significant signal fluctuations. In silico treatments of neural activity are an important tool for the understanding of how the healthy brain can maintain stability, as well as of how pathology can lead to seizures. The hope is that, contained within the mathematical foundations of such treatments, there lie potential strategies for mitigating instabilities, e.g. via external stimulation. Here, we demonstrate that the dynamic causal modelling neuronal state equation generalises to a Fokker-Planck formalism if one extends the framework to model the ways in which activity propagates along the structural connections of neural systems. Using the Jacobian of this generalised state equation, we show that an initially unstable system can be rendered stable via a reduction in diffusivity-i.e., by lowering the rate at which neuronal fluctuations disperse to neighbouring regions. We show, for neural systems prone to epileptic seizures, that such a reduction in diffusivity can be achieved via external stimulation. Specifically, we show that this stimulation should be applied in such a way as to temporarily mirror the activity profile of a pathological region in its functionally connected areas. This counter-intuitive method is intended to be used pre-emptively-i.e., in order to mitigate the effects of the seizure, or ideally even prevent it from occurring in the first place. We offer proof of principle using simulations based on functional neuroimaging data collected from patients with idiopathic generalised epilepsy, in which we successfully suppress pathological activity in a distinct sub-network prior to seizure onset. Our hope is that this technique can form the basis for future real-time monitoring and intervention devices that are capable of treating epilepsy in a non-invasive manner.


Assuntos
Epilepsia Generalizada/fisiopatologia , Rede Nervosa/fisiologia , Convulsões/fisiopatologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos
5.
Neuroimage ; 208: 116452, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830589

RESUMO

Models of coupled phase oscillators are used to describe a wide variety of phenomena in neuroimaging. These models typically rest on the premise that oscillator dynamics do not evolve beyond their respective limit cycles, and hence that interactions can be described purely in terms of phase differences. Whilst mathematically convenient, the restrictive nature of phase-only models can limit their explanatory power. We therefore propose a generalisation of dynamic causal modelling that incorporates both phase and amplitude. This allows for the separate quantifications of phase and amplitude contributions to the connectivity between neural regions. We show, using model-generated data and simulations of coupled pendula, that phase-amplitude models can describe strongly coupled systems more effectively than their phase-only counterparts. We relate our findings to four metrics commonly used in neuroimaging: the Kuramoto order parameter, cross-correlation, phase-lag index, and spectral entropy. We find that, with the exception of spectral entropy, the phase-amplitude model is able to capture all metrics more effectively than the phase-only model. We then demonstrate, using local field potential recordings in rodents and functional magnetic resonance imaging in macaque monkeys, that amplitudes in oscillator models play an important role in describing neural dynamics in anaesthetised brain states.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Modelos Teóricos , Neuroimagem , Animais , Córtex Auditivo/fisiologia , Eletrocorticografia , Neuroimagem Funcional/métodos , Macaca , Neuroimagem/métodos , Roedores , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia , Vigília/fisiologia
6.
Cereb Cortex ; 26(10): 3945-52, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27384059

RESUMO

Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such "scale-free" cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics.


Assuntos
Córtex Cerebral/fisiologia , Células Piramidais/fisiologia , Vigília/fisiologia , Anestesia , Animais , Córtex Cerebral/efeitos dos fármacos , Análise por Conglomerados , Teoria da Informação , Cadeias de Markov , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Imagem Óptica , Optogenética , Células Piramidais/efeitos dos fármacos , Descanso , Processamento de Sinais Assistido por Computador , Vigília/efeitos dos fármacos
7.
J Neurosci ; 35(11): 4626-34, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25788679

RESUMO

The analysis of neuronal avalanches supports the hypothesis that the human cortex operates with critical neural dynamics. Here, we investigate the relationship between cascades of activity in electroencephalogram data, cognitive state, and reaction time in humans using a multimodal approach. We recruited 18 healthy volunteers for the acquisition of simultaneous electroencephalogram and functional magnetic resonance imaging during both rest and during a visuomotor cognitive task. We compared distributions of electroencephalogram-derived cascades to reference power laws for task and rest conditions. We then explored the large-scale spatial correspondence of these cascades in the simultaneously acquired functional magnetic resonance imaging data. Furthermore, we investigated whether individual variability in reaction times is associated with the amount of deviation from power law form. We found that while resting state cascades are associated with approximate power law form, the task state is associated with subcritical dynamics. Furthermore, we found that electroencephalogram cascades are related to blood oxygen level-dependent activation, predominantly in sensorimotor brain regions. Finally, we found that decreased reaction times during the task condition are associated with increased proximity to power law form of cascade distributions. These findings suggest that the resting state is associated with near-critical dynamics, in which a high dynamic range and a large repertoire of brain states may be advantageous. In contrast, a focused cognitive task induces subcritical dynamics, which is associated with a lower dynamic range, which in turn may reduce elements of interference affecting task performance.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Eletroencefalografia , Desempenho Psicomotor/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto Jovem
8.
Brain ; 138(Pt 6): 1696-709, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808370

RESUMO

Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/fisiopatologia , Vias Neurais/fisiopatologia , Adulto , Axônios/patologia , Lesões Encefálicas/patologia , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Transtornos Cognitivos/patologia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Modelos Estatísticos , Vias Neurais/patologia , Substância Branca/fisiopatologia , Adulto Jovem
9.
J Neurosci ; 34(50): 16611-20, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505314

RESUMO

Complex cognitive processes require neuronal activity to be coordinated across multiple scales, ranging from local microcircuits to cortex-wide networks. However, multiscale cortical dynamics are not well understood because few experimental approaches have provided sufficient support for hypotheses involving multiscale interactions. To address these limitations, we used, in experiments involving mice, genetically encoded voltage indicator imaging, which measures cortex-wide electrical activity at high spatiotemporal resolution. Here we show that, as mice recovered from anesthesia, scale-invariant spatiotemporal patterns of neuronal activity gradually emerge. We show for the first time that this scale-invariant activity spans four orders of magnitude in awake mice. In contrast, we found that the cortical dynamics of anesthetized mice were not scale invariant. Our results bridge empirical evidence from disparate scales and support theoretical predictions that the awake cortex operates in a dynamical regime known as criticality. The criticality hypothesis predicts that small-scale cortical dynamics are governed by the same principles as those governing larger-scale dynamics. Importantly, these scale-invariant principles also optimize certain aspects of information processing. Our results suggest that during the emergence from anesthesia, criticality arises as information processing demands increase. We expect that, as measurement tools advance toward larger scales and greater resolution, the multiscale framework offered by criticality will continue to provide quantitative predictions and insight on how neurons, microcircuits, and large-scale networks are dynamically coordinated in the brain.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Vigília/fisiologia , Animais , Córtex Cerebral/química , Eletroencefalografia/métodos , Feminino , Masculino , Camundongos
10.
Neurosci Biobehav Rev ; 146: 105070, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736445

RESUMO

Entropy is not just a property of a system - it is a property of a system and an observer. Specifically, entropy is a measure of the amount of hidden information in a system that arises due to an observer's limitations. Here we provide an account of entropy from first principles in statistical mechanics with the aid of toy models of neural systems. Specifically, we describe the distinction between micro and macrostates in the context of simplified binary-state neurons and the characteristics of entropy required to capture an associated measure of hidden information. We discuss the origin of the mathematical form of entropy via the indistinguishable re-arrangements of discrete-state neurons and show the way in which the arguments are extended into a phase space description for continuous large-scale neural systems. Finally, we show the ways in which limitations in neuroimaging resolution, as represented by coarse graining operations in phase space, lead to an increase in entropy in time as per the second law of thermodynamics. It is our hope that this primer will support the increasing number of studies that use entropy as a way of characterising neuroimaging timeseries and of making inferences about brain states.


Assuntos
Entropia , Humanos , Termodinâmica
11.
Front Hum Neurosci ; 16: 1000656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118965

RESUMO

Frida Kahlo (1907-1954) was a Mexican artist who is remembered for her self-portraits, pain and passion, and bold, vibrant colors. This work aims to use her life story and her artistic production in a longitudinal study to examine with quantitative tools the effects of physical and emotional pain (rage) on artistic expression. Kahlo suffered from polio as a child, was involved in a bus accident as a teenager where she suffered multiple fractures of her spine and had 30 operations throughout her lifetime. She also had a tempestuous relationship with her painter husband, Diego Rivera. Her physical and personal troubles however became the texture of her vivid visual vocabulary-usually expressed through the depiction of Mexican and indigenous culture or the female experience and form. We applied color analysis to a series of Frida's self-portraits and revealed a very strong association of physical pain and emotional rage with low wavelength colors (red and yellow), indicating that the expression of her ailments was, consciously or not, achieved by increasing the perceived luminance of the canvas. Further quantitative analysis that used the fractal dimension identified "The broken column" as the portrait with higher compositional complexity, which matches previous critical acclaim of this portrait as the climax of her art. These results confirm the ability of color analysis to extract emotional and cognitive features from artistic work. We suggest that these tools could be used as markers to support artistic and creative interventions in mental health.

12.
Neuroscientist ; 28(4): 382-399, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33593120

RESUMO

The study of complex systems deals with emergent behavior that arises as a result of nonlinear spatiotemporal interactions between a large number of components both within the system, as well as between the system and its environment. There is a strong case to be made that neural systems as well as their emergent behavior and disorders can be studied within the framework of complexity science. In particular, the field of neuroimaging has begun to apply both theoretical and experimental procedures originating in complexity science-usually in parallel with traditional methodologies. Here, we illustrate the basic properties that characterize complex systems and evaluate how they relate to what we have learned about brain structure and function from neuroimaging experiments. We then argue in favor of adopting a complex systems-based methodology in the study of neuroimaging, alongside appropriate experimental paradigms, and with minimal influences from noncomplex system approaches. Our exposition includes a review of the fundamental mathematical concepts, combined with practical examples and a compilation of results from the literature.


Assuntos
Encéfalo , Neuroimagem , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem/métodos
13.
J Math Neurosci ; 11(1): 10, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34386910

RESUMO

The principle of stationary action is a cornerstone of modern physics, providing a powerful framework for investigating dynamical systems found in classical mechanics through to quantum field theory. However, computational neuroscience, despite its heavy reliance on concepts in physics, is anomalous in this regard as its main equations of motion are not compatible with a Lagrangian formulation and hence with the principle of stationary action. Taking the Dynamic Causal Modelling (DCM) neuronal state equation as an instructive archetype of the first-order linear differential equations commonly found in computational neuroscience, we show that it is possible to make certain modifications to this equation to render it compatible with the principle of stationary action. Specifically, we show that a Lagrangian formulation of the DCM neuronal state equation is facilitated using a complex dependent variable, an oscillatory solution, and a Hermitian intrinsic connectivity matrix. We first demonstrate proof of principle by using Bayesian model inversion to show that both the original and modified models can be correctly identified via in silico data generated directly from their respective equations of motion. We then provide motivation for adopting the modified models in neuroscience by using three different types of publicly available in vivo neuroimaging datasets, together with open source MATLAB code, to show that the modified (oscillatory) model provides a more parsimonious explanation for some of these empirical timeseries. It is our hope that this work will, in combination with existing techniques, allow people to explore the symmetries and associated conservation laws within neural systems - and to exploit the computational expediency facilitated by direct variational techniques.

14.
Transl Psychiatry ; 11(1): 335, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34052834

RESUMO

The glutamatergic modulator ketamine has been shown to rapidly reduce depressive symptoms in patients with treatment-resistant major depressive disorder (TRD). Although its mechanisms of action are not fully understood, changes in cortical excitation/inhibition (E/I) following ketamine administration are well documented in animal models and could represent a potential biomarker of treatment response. Here, we analyse neuromagnetic virtual electrode time series collected from the primary somatosensory cortex in 18 unmedicated patients with TRD and in an equal number of age-matched healthy controls during a somatosensory 'airpuff' stimulation task. These two groups were scanned as part of a clinical trial of ketamine efficacy under three conditions: (a) baseline; (b) 6-9 h following subanesthetic ketamine infusion; and (c) 6-9 h following placebo-saline infusion. We obtained estimates of E/I interaction strengths by using dynamic causal modelling (DCM) on the time series, thereby allowing us to pinpoint, under each scanning condition, where each subject's dynamics lie within the Poincaré diagram-as defined in dynamical systems theory. We demonstrate that the Poincaré diagram offers classification capability for TRD patients, in that the further the patients' coordinates were shifted (by virtue of ketamine) toward the stable (top-left) quadrant of the Poincaré diagram, the more their depressive symptoms improved. The same relationship was not observed by virtue of a placebo effect-thereby verifying the drug-specific nature of the results. We show that the shift in neural dynamics required for symptom improvement necessitates an increase in both excitatory and inhibitory coupling. We present accompanying MATLAB code made available in a public repository, thereby allowing for future studies to assess individually tailored treatments of TRD.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Ketamina , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Humanos , Infusões Intravenosas , Ketamina/uso terapêutico , Resultado do Tratamento
15.
Front Comput Neurosci ; 15: 643148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967728

RESUMO

We derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be "scalable" if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler's third law from the timeseries. In contrast, a "scale free" system is one in which there is no characteristic length scale, meaning that images of such a system are statistically unchanged at different levels of magnification. As an example of such a system, we use calcium imaging collected in murine cortex and show that the dynamical critical exponent, as defined in renormalization group theory, can be estimated in an empirical biological setting. We find that a task-relevant region of the cortex is associated with higher dynamical critical exponents in task vs. spontaneous states and vice versa for a task-irrelevant region.

16.
Netw Neurosci ; 5(1): 211-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688613

RESUMO

At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions-and analyses-of distributed brain responses: namely, functional segregation and integration. There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed effective connectivity that mediates neuronal message passing and dynamics on neuronal circuits. The second phenomenological approach usually characterizes undirected functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks, self-organized criticality, dynamical instability, and so on. This paper describes a treatment of effective connectivity that speaks to the emergence of intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in the self-organization of far from equilibrium systems. Using the apparatus of the renormalization group, we show that much of the phenomenology found in network neuroscience is an emergent property of a particular partition of neuronal states, over progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs to the phenomenology of intrinsic brain networks.

17.
Front Psychiatry ; 11: 685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754073

RESUMO

Vincent van Gogh was one of the most influential artists of the Western world, having shaped the post-impressionist art movement by shifting its boundaries forward into abstract expressionism. His distinctive style, which was not valued by the art-buying public during his lifetime, is nowadays one of the most sought after. However, despite the great deal of attention from academic and artistic circles, one important question remains open: was van Gogh's original style a visual manifestation distinct from his troubled mind, or was it in fact a by-product of an impairment that resulted from the psychiatric illness that marred his entire life? In this paper, we use a previously published multi-scale model of brain function to piece together a number of disparate observations about van Gogh's life and art. In particular, we first quantitatively analyze the brushwork of his large production of self-portraits using the image autocorrelation and demonstrate a strong association between the contrasts in the paintings, the occurrence of psychiatric symptoms, and his simultaneous use of absinthe-a strong liquor known to affect gamma aminobutyric acid (GABA) alpha receptors. Secondly, we propose that van Gogh suffered from a defective function of parvalbumin interneurons, which seems likely given his family history of schizophrenia and his addiction to substances associated with GABA action. This could explain the need for the artist to increasingly amplify the contrasts in his brushwork as his disease progressed, as well as his tendency to merge esthetic and personal experiences into a new form of abstraction.

18.
PLoS One ; 13(5): e0197893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795654

RESUMO

Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality.


Assuntos
Anestesia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Descanso/fisiologia , Potenciais de Ação , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Camundongos , Microeletrodos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Vigília/efeitos dos fármacos , Vigília/fisiologia
19.
Front Comput Neurosci ; 10: 46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242502

RESUMO

Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA