Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 60(7): 697-705, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36414255

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is due to the homozygous absence of SMN1 in around 97% of patients, independent of the severity (classically ranked into types I-III). The high genetic homogeneity, coupled with the excellent results of presymptomatic treatments of patients with each of the three disease-modifying therapies available, makes SMA one of the golden candidates to genetic newborn screening (NBS) (SMA-NBS). The implementation of SMA in NBS national programmes occurring in some countries is an arising new issue that the scientific community has to address. We report here the results of the first Italian SMA-NBS project and provide some proposals for updating the current molecular diagnostic scenario. METHODS: The screening test was performed by an in-house-developed qPCR assay, amplifying SMN1 and SMN2. Molecular prognosis was assessed on fresh blood samples. RESULTS: We found 15 patients/90885 newborns (incidence 1:6059) having the following SMN2 genotypes: 1 (one patient), 2 (eight patients), 2+c.859G>C variant (one patient), 3 (three patients), 4 (one patient) or 6 copies (one patient). Six patients (40%) showed signs suggestive of SMA at birth. We also discuss some unusual cases we found. CONCLUSION: The molecular diagnosis of SMA needs to adapt to the new era of the disease with specific guidelines and standard operating procedures. In detail, SMA diagnosis should be felt as a true medical urgency due to therapeutic implications; SMN2 copy assessment needs to be standardised; commercially available tests need to be improved for higher SMN2 copies determination; and the SMN2 splicing-modifier variants should be routinely tested in SMA-NBS.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Humanos , Recém-Nascido , Projetos Piloto , Triagem Neonatal/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Genótipo , Itália
2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000022

RESUMO

CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.


Assuntos
Cromossomos Humanos X , Proteínas Serina-Treonina Quinases , Humanos , Feminino , Cromossomos Humanos X/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/deficiência , Inversão Cromossômica , Síndromes Epilépticas/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Espasmos Infantis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA