Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 103(5): 740-751, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388401

RESUMO

Androgenetic complete hydatidiform moles are human pregnancies with no embryos and affect 1 in every 1,400 pregnancies. They have mostly androgenetic monospermic genomes with all the chromosomes originating from a haploid sperm and no maternal chromosomes. Androgenetic complete hydatidiform moles were described in 1977, but how they occur has remained an open question. We identified bi-allelic deleterious mutations in MEI1, TOP6BL/C11orf80, and REC114, with roles in meiotic double-strand breaks formation in women with recurrent androgenetic complete hydatidiform moles. We investigated the occurrence of androgenesis in Mei1-deficient female mice and discovered that 8% of their oocytes lose all their chromosomes by extruding them with the spindles into the first polar body. We demonstrate that Mei1-/- oocytes are capable of fertilization and 5% produce androgenetic zygotes. Thus, we uncover a meiotic abnormality in mammals and a mechanism for the genesis of androgenetic zygotes that is the extrusion of all maternal chromosomes and their spindles into the first polar body.


Assuntos
Androgênios/genética , Mola Hidatiforme/genética , Mutação/genética , Alelos , Animais , Cromossomos/genética , Feminino , Humanos , Masculino , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/patologia , Gravidez , Zigoto/patologia
2.
Mod Pathol ; 33(7): 1264-1274, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31937902

RESUMO

Poorly differentiated thyroid carcinomas (PDTC) in young individuals are rare and their clinical and histopathologic features, genetic mechanisms, and outcomes remain largely unknown. Here, we report a detailed characterization of a series of six PDTC in patients ≤21 years old defined by Turin diagnostic criteria studied for mutations and gene fusions characteristic of thyroid cancer using targeted next-generation sequencing (NGS) and whole-exome sequencing (WES). All tumors had solid, insular, or trabecular growth pattern and high mitotic rate, and five out of six tumors showed tumor necrosis. Targeted NGS assay identified somatic mutations in the DICER1 gene in five of six (83%) tumors, all of which were "hotspot" mutations encoding the metal-ion binding sites of the RNase IIIb domain of DICER1. WES was performed in five cases which confirmed all hotspot mutations and detected two tumors with additional inactivating DICER1 alterations. Of these two, one was a germline pathogenic DICER1 variant and the other had loss of heterozygosity for DICER1. No other mutations or gene fusions characteristic of adult well-differentiated thyroid cancer and PDTC (BRAF, RAS, TERT, RET/PTC, and other) were detected. On follow-up, available for five patients, three patients died of disease 8-24 months after diagnosis, whereas two were alive with no disease. The results of our study demonstrate that childhood- and adolescent-onset PDTC are genetically distinct from adult-onset PDTC in that they are strongly associated with DICER1 mutations and may herald DICER1 syndrome in a minority. As such, all young persons with PDTC may benefit from genetic counseling. Furthermore, their clinically aggressive behavior contrasts sharply with the indolent nature of the great majority of thyroid tumors with DICER1 mutations reported to date.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , RNA Helicases DEAD-box/genética , Ribonuclease III/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Adolescente , Feminino , Humanos , Masculino , Mutação , Adulto Jovem
3.
Am J Hum Genet ; 98(4): 735-43, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058446

RESUMO

Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species.


Assuntos
Corpo Estriado/patologia , Hipercinese/genética , Mutação , Diester Fosfórico Hidrolases/genética , Alelos , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Variação Genética , Células HEK293 , Humanos , Hipercinese/diagnóstico , Hipercinese/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Linhagem , Inibidores de Fosfodiesterase/metabolismo , Alinhamento de Sequência
4.
Am J Hum Genet ; 96(6): 971-8, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26027496

RESUMO

Heparan and chondroitin/dermatan sulfated proteoglycans have a wide range of roles in cellular and tissue homeostasis including growth factor function, morphogen gradient formation, and co-receptor activity. Proteoglycan assembly initiates with a xylose monosaccharide covalently attached by either xylosyltransferase I or II. Three individuals from two families were found that exhibited similar phenotypes. The index case subjects were two brothers, individuals 1 and 2, who presented with osteoporosis, cataracts, sensorineural hearing loss, and mild learning defects. Whole exome sequence analyses showed that both individuals had a homozygous c.692dup mutation (GenBank: NM_022167.3) in the xylosyltransferase II locus (XYLT2) (MIM: 608125), causing reduced XYLT2 mRNA and low circulating xylosyltransferase (XylT) activity. In an unrelated boy (individual 3) from the second family, we noted low serum XylT activity. Sanger sequencing of XYLT2 in this individual revealed a c.520del mutation in exon 2 that resulted in a frameshift and premature stop codon (p.Ala174Profs(∗)35). Fibroblasts from individuals 1 and 2 showed a range of defects including reduced XylT activity, GAG incorporation of (35)SO4, and heparan sulfate proteoglycan assembly. These studies demonstrate that human XylT2 deficiency results in vertebral compression fractures, sensorineural hearing loss, eye defects, and heart defects, a phenotype that is similar to the autosomal-recessive disorder spondylo-ocular syndrome of unknown cause. This phenotype is different from what has been reported in individuals with other linker enzyme deficiencies. These studies illustrate that the cells of the lens, retina, heart muscle, inner ear, and bone are dependent on XylT2 for proteoglycan assembly in humans.


Assuntos
Catarata/genética , Catarata/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Mutação da Fase de Leitura/genética , Homozigoto , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Pentosiltransferases/genética , Descolamento Retiniano/genética , Descolamento Retiniano/patologia , Sequência de Bases , Catarata/tratamento farmacológico , Anormalidades Craniofaciais/tratamento farmacológico , Difosfonatos/uso terapêutico , Exoma/genética , Oftalmopatias Hereditárias/tratamento farmacológico , Transtornos da Audição/genética , Transtornos da Audição/patologia , Humanos , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , Osteocondrodisplasias/tratamento farmacológico , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Pamidronato , Linhagem , Pentosiltransferases/sangue , Radiografia , Reação em Cadeia da Polimerase em Tempo Real , Descolamento Retiniano/tratamento farmacológico , Análise de Sequência de DNA , UDP Xilose-Proteína Xilosiltransferase
5.
Am J Hum Genet ; 96(3): 425-31, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25683117

RESUMO

Cole-Carpenter syndrome is a severe bone fragility disorder that is characterized by frequent fractures, craniosynostosis, ocular proptosis, hydrocephalus, and distinctive facial features. To identify the cause of Cole-Carpenter syndrome in the two individuals whose clinical results were presented in the original description of this disorder, we performed whole-exome sequencing of genomic DNA samples from both individuals. The two unrelated individuals had the same heterozygous missense mutation in exon 9 of P4HB (NM_000918.3: c.1178A>G [p.Tyr393Cys]), the gene that encodes protein disulfide isomerase (PDI). In one individual, the P4HB mutation had arisen de novo, whereas in the other the mutation was transmitted from the clinically unaffected father who was a mosaic carrier of the variant. The mutation was located in the C-terminal disulfide isomerase domain of PDI, sterically close to the enzymatic center, and affected disulfide isomerase activity in vitro. Skin fibroblasts showed signs of increased endoplasmic reticulum stress, but despite the reported importance of PDI for collagen type I production, the rate of collagen type I secretion appeared normal. In conclusion, Cole-Carpenter syndrome is caused by a specific de novo mutation in P4HB that impairs the disulfide isomerase activity of PDI.


Assuntos
Craniossinostoses/genética , Anormalidades do Olho/genética , Heterozigoto , Hidrocefalia/genética , Mutação de Sentido Incorreto , Osteogênese Imperfeita/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas/genética , Pré-Escolar , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Linhagem , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Análise de Sequência de DNA
6.
Am J Hum Genet ; 96(6): 979-85, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26027498

RESUMO

Secreted protein, acidic, cysteine-rich (SPARC) is a glycoprotein that binds to collagen type I and other proteins in the extracellular matrix. Using whole-exome sequencing to identify the molecular defect in two unrelated girls with severe bone fragility and a clinical diagnosis of osteogenesis imperfecta type IV, we identified two homozygous variants in SPARC (GenBank: NM_003118.3; c.497G>A [p.Arg166His] in individual 1; c.787G>A [p.Glu263Lys] in individual 2). Published modeling and site-directed mutagenesis studies had previously shown that the residues substituted by these mutations form an intramolecular salt bridge in SPARC and are essential for the binding of SPARC to collagen type I. The amount of SPARC secreted by skin fibroblasts was reduced in individual 1 but appeared normal in individual 2. The migration of collagen type I alpha chains produced by these fibroblasts was mildly delayed on SDS-PAGE gel, suggesting some overmodification of collagen during triple helical formation. Pulse-chase experiments showed that collagen type I secretion was mildly delayed in skin fibroblasts from both individuals. Analysis of an iliac bone sample from individual 2 showed that trabecular bone was hypermineralized on the material level. In conclusion, these observations show that homozygous mutations in SPARC can give rise to severe bone fragility in humans.


Assuntos
Modelos Moleculares , Mutação de Sentido Incorreto/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Osteonectina/genética , Sequência de Aminoácidos , Sequência de Bases , Colágeno Tipo I/metabolismo , Eletroforese em Gel de Poliacrilamida , Exoma/genética , Feminino , Genes Recessivos/genética , Humanos , Immunoblotting , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Osteonectina/química , Osteonectina/metabolismo , Linhagem , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Mod Pathol ; 31(1): 169-178, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862265

RESUMO

Anaplastic sarcoma of the kidney is a rare tumor (≤25 reported cases) characterized by the presence of cysts, and solid areas composed of bundles of undifferentiated spindle cells, showing marked cellular anaplasia (usually accompanied by TP53 overexpression). These tumors often feature prominent areas of cartilage or chondroid material. Germline mutations in DICER1, encoding the microRNA (miRNA) processor DICER1, cause an eponymous syndrome. Recent reports suggest that anaplastic sarcoma of the kidney should be included in DICER1 syndrome as germline DICER1 mutations are associated with the occurrence of such tumors. Therefore, we sought to determine the following: (1) what proportion of anaplastic sarcoma of the kidney have DICER1 mutations; (2) whether the identified mutations affect both alleles of DICER1 (ie, are biallelic); (3) whether somatic missense mutations in the DICER1 RNase IIIb domain impact miRNA generation; and (4) whether TP53 alteration always occurs in these tumors. DICER1 mutations were evaluated by Sanger sequencing and next-generation sequencing in nine tumor/normal pairs. Impact of DICER1 mutations on miRNA generation was evaluated via an in vitro DICER1 cleavage assay. TP53 status was assessed by immunohistochemistry and next-generation sequencing. Eight of the nine cases had at least one RNase IIIb DICER1 mutation that impacted the generation of miRNAs. There were six tumors with truncating DICER1 mutations and in four of them, the mutation found in the tumor was also detected in adjacent normal tissue, and therefore was likely to be either mosaic or germline in origin. Analysis of mutation phase revealed that two of three tumors had biallelic DICER1 mutations. Six of nine anaplastic sarcomas of the kidney had aberrant TP53 immunohistochemisty with damaging TP53 mutations identified in three cases. Taken together, these data suggest that the great majority of anaplastic sarcomas of the kidney have DICER1 mutations and confirm that these tumors are part of the DICER1 syndrome.


Assuntos
Biomarcadores Tumorais/genética , RNA Helicases DEAD-box/genética , Neoplasias Renais/genética , Ribonuclease III/genética , Sarcoma/genética , Adolescente , Criança , Pré-Escolar , Feminino , Mutação em Linhagem Germinativa , Humanos , Lactente , Masculino , Mutação
9.
J Med Genet ; 54(7): 490-501, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264986

RESUMO

BACKGROUND: Hydranencephaly is a congenital anomaly leading to replacement of the cerebral hemispheres with a fluid-filled cyst. The goals of this work are to describe a novel autosomal-recessive syndrome that includes hydranencephaly (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly (MARCH)); to identify its genetic cause(s) and to provide functional insight into pathomechanism. METHODS: We used homozygosity mapping and exome sequencing to identify recessive mutations in a single family with three affected fetuses. Immunohistochemistry, RT-PCR and imaging in cell lines, and zebrafish models, were used to explore the function of the gene and the effect of the mutation. RESULTS: We identified a homozygous nonsense mutation in CEP55 segregating with MARCH. Testing the effect of this allele on patient-derived cells indicated both a reduction of the overall CEP55 message and the production of a message that likely gives rise to a truncated protein. Suppression or ablation of cep55l in zebrafish embryos recapitulated key features of MARCH, most notably renal dysplasia, cerebellar hypoplasia and craniofacial abnormalities. These phenotypes could be rescued by full-length but not truncated human CEP55 message. Finally, we expressed the truncated form of CEP55 in human cells, where we observed a failure of truncated protein to localise to the midbody, leading to abscission failure and multinucleated daughter cells. CONCLUSIONS: CEP55 loss of function mutations likely underlie MARCH, a novel multiple congenital anomaly syndrome. This association expands the involvement of centrosomal proteins in human genetic disorders by highlighting a role in midbody function.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Mitose/genética , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Edição de Genes , Humanos , Lactente , Masculino , Modelos Biológicos , Proteínas Nucleares/metabolismo , Linhagem , Fenótipo , Frações Subcelulares/metabolismo , Síndrome , Proteínas de Peixe-Zebra/metabolismo
10.
Hum Mol Genet ; 24(2): 516-24, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25214535

RESUMO

We had previously published the clinical characteristics of a bone fragility disorder in children that was characterized mainly by lower extremity fractures and a mineralization defect in bone tissue but not on the growth plate level. We have now performed whole-exome sequencing on four unrelated individuals with this phenotype. Three individuals were homozygous for a nucleotide change in BMP1, affecting the polyadenylation signal of the transcript that codes for the short isoform of BMP1 (BMP1-1) (c.*241T>C). In skin fibroblasts of these individuals, we found low levels of BMP1-1 transcript and protein. The fourth individual was compound heterozygous for the c.*241T>C variant in BMP1-1 and a variant in BMP1 exon 15 (c.2107G>C) that affected splicing in both BMP1-1 and the long isoform of BMP1 (BMP1-3). Both the homozygous 3'UTR variant and the compound heterozygous variants were associated with impaired procollagen type I C-propeptide cleavage, as the amount of free C-propeptide in the supernatant of skin fibroblasts was less than in controls. Peripheral quantitative computed tomography showed that all individuals had elevated volumetric cortical bone mineral density. Assessment of iliac bone samples by histomorphometry and quantitative backscattered electron imaging indicated that the onset of mineralization at bone formation sites was delayed, but that mineralized matrix was hypermineralized. These results show that isolated lack of BMP1-1 causes bone fragility in children.


Assuntos
Doenças Ósseas/genética , Proteína Morfogenética Óssea 1/genética , Fraturas Ósseas/genética , Regiões 3' não Traduzidas , Doenças Ósseas/metabolismo , Proteína Morfogenética Óssea 1/deficiência , Criança , Pré-Escolar , Colágeno Tipo I/metabolismo , Éxons , Feminino , Fraturas Ósseas/metabolismo , Humanos , Lactente , Masculino , Poliadenilação
11.
Hum Mol Genet ; 24(14): 4103-13, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25911677

RESUMO

Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metionina/química , Células Cultivadas , Cromatografia Líquida , Ciclo-Oxigenase 1/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Exoma , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Heterozigoto , Humanos , Doença de Leigh/genética , Mitocôndrias/metabolismo , Mutação , Fosforilação Oxidativa , Biossíntese de Proteínas , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
12.
Hum Mutat ; 37(9): 976-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349184

RESUMO

Vitamin B12 (cobalamin, Cbl) cofactors adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl) are required for the activity of the enzymes methylmalonyl-CoA mutase (MCM) and methionine synthase (MS). Inborn errors of Cbl metabolism are rare Mendelian disorders associated with hematological and neurological manifestations, and elevations of methylmalonic acid and/or homocysteine in the blood and urine. We describe a patient whose fibroblasts had decreased functional activity of MCM and MS and decreased synthesis of AdoCbl and MeCbl (3.4% and 1.0% of cellular Cbl, respectively). The defect in cultured patient fibroblasts complemented those from all known complementation groups. Patient cells accumulated transcobalamin-bound-Cbl, a complex which usually dissociates in the lysosome to release free Cbl. Whole-exome sequencing identified putative disease-causing variants c.851T>G (p.L284*) and c.1019C>T (p.T340I) in transcription factor ZNF143. Proximity biotinylation analysis confirmed the interaction between ZNF143 and HCFC1, a protein that regulates expression of the Cbl trafficking enzyme MMACHC. qRT-PCR analysis revealed low MMACHC expression levels both in patient fibroblasts, and in control fibroblasts incubated with ZNF143 siRNA.


Assuntos
Citoplasma/metabolismo , Erros Inatos do Metabolismo/genética , Transativadores/genética , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Mutação , Oxirredutases , Linhagem
13.
Am J Hum Genet ; 92(2): 252-8, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23290074

RESUMO

Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is an autosomal-dominant bone dysplasia characterized by metaphyseal flaring of long bones, enlargement of the medial halves of the clavicles, maxillary hypoplasia, variable brachydactyly, and dystrophic teeth. We performed genome-wide SNP genotyping in five affected and four unaffected members of an extended family with MDMHB. Analysis for copy-number variations revealed that a 105 kb duplication within RUNX2 segregated with the MDMHB phenotype in a region with maximum linkage. Real-time PCR for copy-number variation in genomic DNA in eight samples, as well as sequence analysis of fibroblast cDNA from one subject with MDMHB confirmed that affected family members were heterozygous for the presence of an intragenic duplication encompassing exons 3 to 5 of RUNX2. These three exons code for the Q/A domain and the functionally essential DNA-binding runt domain of RUNX2. Transfection studies with murine Runx2 cDNA showed that cellular levels of mutated RUNX2 were markedly higher than those of wild-type RUNX2, suggesting that the RUNX2 duplication found in individuals with MDMHB leads to a gain of function. Until now, only loss-of-function mutations have been detected in RUNX2; the present report associates an apparent gain-of-function alteration of RUNX2 function with a distinct rare disease.


Assuntos
Braquidactilia/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Duplicação Gênica/genética , Osteocondrodisplasias/genética , Adolescente , Braquidactilia/diagnóstico por imagem , Cromossomos Humanos Par 6/genética , Éxons/genética , Fácies , Família , Feminino , Dedos/anormalidades , Dedos/diagnóstico por imagem , Genoma Humano/genética , Humanos , Masculino , Maxila/anormalidades , Maxila/diagnóstico por imagem , Osteocondrodisplasias/diagnóstico por imagem , Linhagem , Radiografia , Adulto Jovem
15.
Bioinformatics ; 31(3): 429-31, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25297069

RESUMO

SUMMARY: Whole-exome sequencing (WES) has extensively been used in cancer genome studies; however, the use of WES data in the study of loss of heterozygosity or more generally allelic imbalance (AI) has so far been very limited, which highlights the need for user-friendly and flexible software that can handle low-quality datasets. We have developed a statistical approach, ExomeAI, for the detection of recurrent AI events using WES datasets, specifically where matched normal samples are not available. AVAILABILITY: ExomeAI is a web-based application, publicly available at: http://genomequebec.mcgill.ca/exomeai. CONTACT: JavadNadaf@gmail.com or somayyeh.fahiminiya@mcgill.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Desequilíbrio Alélico/genética , Exoma/genética , Genoma Humano/genética , Neoplasias/genética , Análise de Sequência de DNA/métodos , Software , Simulação por Computador , Heterozigoto , Humanos , Perda de Heterozigosidade , Neoplasias/diagnóstico
16.
Acta Neuropathol ; 131(6): 847-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26920151

RESUMO

Dysembryoplastic neuroepithelial tumor (DNET) is a benign brain tumor associated with intractable drug-resistant epilepsy. In order to identify underlying genetic alterations and molecular mechanisms, we examined three family members affected by multinodular DNETs as well as 100 sporadic tumors from 96 patients, which had been referred to us as DNETs. We performed whole-exome sequencing on 46 tumors and targeted sequencing for hotspot FGFR1 mutations and BRAF p.V600E was used on the remaining samples. FISH, copy number variation assays and Sanger sequencing were used to validate the findings. By whole-exome sequencing of the familial cases, we identified a novel germline FGFR1 mutation, p.R661P. Somatic activating FGFR1 mutations (p.N546K or p.K656E) were observed in the tumor samples and further evidence for functional relevance was obtained by in silico modeling. The FGFR1 p.K656E mutation was confirmed to be in cis with the germline p.R661P variant. In 43 sporadic cases, in which the diagnosis of DNET could be confirmed on central blinded neuropathology review, FGFR1 alterations were also frequent and mainly comprised intragenic tyrosine kinase FGFR1 duplication and multiple mutants in cis (25/43; 58.1 %) while BRAF p.V600E alterations were absent (0/43). In contrast, in 53 cases, in which the diagnosis of DNET was not confirmed, FGFR1 alterations were less common (10/53; 19 %; p < 0.0001) and hotspot BRAF p.V600E (12/53; 22.6 %) (p < 0.001) prevailed. We observed overexpression of phospho-ERK in FGFR1 p.R661P and p.N546K mutant expressing HEK293 cells as well as FGFR1 mutated tumor samples, supporting enhanced MAP kinase pathway activation under these conditions. In conclusion, constitutional and somatic FGFR1 alterations and MAP kinase pathway activation are key events in the pathogenesis of DNET. These findings point the way towards existing targeted therapies.


Assuntos
Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA/genética , Glioma/genética , Mutação/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adolescente , Adulto , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteínas Proto-Oncogênicas B-raf/genética , Adulto Jovem
17.
Am J Med Genet A ; 170(9): 2310-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27375131

RESUMO

Marden-Walker syndrome is challenging to diagnose, as there is significant overlap with other multi-system congenital contracture syndromes including Beals congenital contractural arachnodactyly, D4ST1-Deficient Ehlers-Danlos syndrome (adducted thumb-clubfoot syndrome), Schwartz-Jampel syndrome, Freeman-Sheldon syndrome, Cerebro-oculo-facio-skeletal syndrome, and Van den Ende-Gupta syndrome. We discuss this differential diagnosis in the context of a boy from a consanguineous union with Van den Ende-Gupta syndrome, a diagnosis initially confused by the atypical presence of intellectual disability. SNP microarray and whole exome sequencing identified a homozygous frameshift mutation (p.L870V) in SCARF2 and predicted damaging mutations in several genes, most notably DGCR2 (p.P75L) and NCAM2 (p.S147G), both possible candidates for this child's intellectual disability. We review distinguishing features for each Marden-Walker-like syndrome and propose a clinical algorithm for diagnosis among this spectrum of disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Aracnodactilia/diagnóstico , Aracnodactilia/genética , Blefarofimose/diagnóstico , Blefarofimose/genética , Contratura/diagnóstico , Contratura/genética , Estudos de Associação Genética , Anormalidades Múltiplas/metabolismo , Aracnodactilia/metabolismo , Blefarofimose/metabolismo , Criança , Contratura/metabolismo , Variações do Número de Cópias de DNA , Exoma , Mutação da Fase de Leitura , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Imagem Multimodal , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Depuradores Classe F/genética
19.
J Med Genet ; 52(6): 381-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873735

RESUMO

BACKGROUND: Neuroanatomical defects are often present in children with severe developmental delay and intellectual disabilities. Few genetic loci have been associated with disorders of neurodevelopment. Our objective of the present study was to analyse a consanguineous Arab family showing some of the hallmark signs of a rare cerebellar hypoplasia-related neurodevelopmental syndrome as a strategy for discovering a causative genetic mutation. METHODS: We used whole exome sequencing to identify the causative mutation in two female siblings of a consanguineous Arab family showing some of the hallmark signs of a cerebellar-hypoplasia-related neurodevelopmental disorder. Direct Sanger sequencing was used to validate the candidate mutations that cosegregated with the phenotype. Gene expression and loss of function studies were carried out in the zebrafish model system to examine the role of the candidate gene in neurodevelopment. RESULTS: Patients presented with severe global developmental delay, intellectual disability, hypoplasia of the cerebellum and biochemical findings suggestive of nephrotic disease. Whole exome sequencing of the two patients revealed a shared nonsense homozygous variant in WDR73 (p.Q235X (c.703C>T)) resulting in loss of the last 144 amino acids of the protein. The variant segregated according to a recessive mode of inheritance in this family and was absent from public and our inhouse databases. We examined the developmental role of WDR73 using a loss-of-function paradigm in zebrafish. There was a significant brain growth and morphogenesis defect in wdr73 knockdown embryos resulting in a poorly differentiated midbrain and cerebellum. CONCLUSIONS: The results provide new insight into the functional role of WDR73 in brain development and show that perturbation of its function in an inherited disorder in humans is associated with cerebellar hypoplasia as well as nephrotic disease, consistent with Galloway-Mowat Syndrome.


Assuntos
Códon sem Sentido , Estudos de Associação Genética , Hérnia Hiatal/genética , Microcefalia/genética , Nefrose/genética , Proteínas/genética , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Cerebelo/patologia , Biologia Computacional , Consanguinidade , Bases de Dados de Ácidos Nucleicos , Exoma , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Hérnia Hiatal/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Microcefalia/diagnóstico , Nefrose/diagnóstico , Neurogênese/genética , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Peixe-Zebra
20.
J Med Genet ; 52(6): 413-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795793

RESUMO

BACKGROUND: Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. METHODS: A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. RESULTS: We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. CONCLUSIONS: We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome.


Assuntos
Estudos de Associação Genética , Variação Genética , Síndrome de Noonan/genética , Proteínas Son Of Sevenless/genética , Fatores de Transcrição/genética , Estudos de Coortes , Fácies , Feminino , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/diagnóstico , Linhagem , Fenótipo , Transdução de Sinais , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA