Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Reports ; 7(3): 355-369, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27569062

RESUMO

Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS), whereby 40% of patients develop hypertrophic cardiomyopathy (HCM). As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC) model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα(+)/CD90(-) cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα(-)/CD90(+) cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor ß (TGFß) paracrine signaling. Inhibition of TGFß or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFß inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Separação Celular , Reprogramação Celular , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas ras/metabolismo
2.
Cell Res ; 24(3): 278-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24481529

RESUMO

miRNAs are an important class of regulators that play roles in cellular homeostasis and disease. Muscle-specific miRNAs, miR-1-1 and miR-1-2, have been found to play important roles in regulating cell proliferation and cardiac function. Redundancy between miR-1-1 and miR-1-2 has previously impeded a full understanding of their roles in vivo. To determine how miR-1s regulate cardiac function in vivo, we generated mice lacking miR-1-1 and miR-1-2 without affecting nearby genes. miR-1 double knockout (miR-1 dKO) mice were viable and not significantly different from wild-type controls at postnatal day 2.5. Thereafter, all miR-1 dKO mice developed dilated cardiomyopathy (DCM) and died before P17. Massively parallel sequencing showed that a large portion of upregulated genes after deletion of miR-1s is associated with the cardiac fetal gene program including cell proliferation, glycolysis, glycogenesis, and fetal sarcomere-associated genes. Consistent with gene profiling, glycogen content and glycolytic rates were significantly increased in miR-1 dKO mice. Estrogen-related Receptor ß (Errß) was identified as a direct target of miR-1, which can regulate glycolysis, glycogenesis, and the expression of sarcomeric proteins. Cardiac-specific overexpression of Errß led to glycogen storage, cardiac dilation, and sudden cardiac death around 3-4 weeks of age. We conclude that miR-1 and its primary target Errß act together to regulate the transition from prenatal to neonatal stages by repressing the cardiac fetal gene program. Loss of this regulation leads to a neonatal DCM.


Assuntos
MicroRNAs/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Proliferação de Células , Células Cultivadas , Metabolismo Energético , Glicogênio/metabolismo , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , Miocárdio/patologia , Miócitos Cardíacos/citologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Sarcômeros/metabolismo , Alinhamento de Sequência
3.
PLoS One ; 9(7): e101316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25010565

RESUMO

The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC) reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN). When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.


Assuntos
Citometria de Fluxo/métodos , Átrios do Coração/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Proteolipídeos/genética , Cálcio/metabolismo , Diferenciação Celular , Cromossomos Artificiais Bacterianos/genética , Fenômenos Eletrofisiológicos , Expressão Gênica , Genes Reporter/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA