Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158434

RESUMO

Endothelial dysfunction is a known consequence of bone morphogenetic protein type II receptor (BMPR2) mutations seen in pulmonary arterial hypertension (PAH). However, standard 2D cell culture models fail to mimic the mechanical environment seen in the pulmonary vasculature. Hydrogels have emerged as promising platforms for 3D disease modeling due to their tunable physical and biochemical properties. In order to recreate the mechanical stimuli seen in the pulmonary vasculature, we have created a novel 3D hydrogel-based pulmonary vasculature model ("artificial arteriole") that reproduces the pulsatile flow rates and pressures seen in the human lung. Using this platform, we studied both Bmpr2R899X and WT endothelial cells to better understand how the addition of oscillatory flow and physiological pressure influenced gene expression, cell morphology, and cell permeability. The addition of oscillatory flow and pressure resulted in several gene expression changes in both WT and Bmpr2R899X cells. However, for many pathways with relevance to PAH etiology, Bmpr2R899X cells responded differently when compared to the WT cells. Bmpr2R899X cells were also found not to elongate in the direction of flow, and instead remained stagnant in morphology despite mechanical stimuli. The increased permeability of the Bmpr2R899X layer was successfully reproduced in our artificial arteriole, with the addition of flow and pressure not leading to significant changes in permeability. Our artificial arteriole is the first to model many mechanical properties seen in the lung. Its tunability enables several new opportunities to study the endothelium in pulmonary vascular disease with increased control over environmental parameters.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Endoteliais/fisiologia , Hipertensão Pulmonar/fisiopatologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Camundongos , Análise de Sequência de RNA
2.
Lab Chip ; 24(6): 1794-1807, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362777

RESUMO

Human microphysiological systems, such as organs on chips, are an emerging technology for modeling human physiology in a preclinical setting to understand the mechanism of action of drugs, to evaluate the efficacy of treatment options for human disease and impairment, and to assess drug toxicity. By using human cells co-cultured in three-dimensional constructs, organ chips can provide greater fidelity to the human cellular condition than their two-dimensional predecessors. However, with the rise of SARS-CoV-2 and the global COVID-19 pandemic, it became clear that many microphysiological systems were not compatible with or optimized for studies of infectious disease and operation in a Biosafety Level 3 (BSL-3) environment. Given that one of the early sites of SARS-CoV-2 infection is the airway, we created a human airway organ chip that could operate in a BSL-3 space with high throughput and minimal manipulation, while retaining the necessary physical and physiological components to recapitulate tissue response to infectious agents and the immune response to infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Carga Viral , Pandemias , Imuno-Histoquímica , Citocinas , Dispositivos Lab-On-A-Chip
3.
J Neurodev Disord ; 16(1): 27, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783199

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene and dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). METHODS: We generated TSC disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. RESULTS: Using microphysiological systems, we demonstrate that a BBB generated from TSC2 heterozygous mutant cells shows increased permeability. This can be rescued by wild type astrocytes or by treatment with rapamycin, an mTOR kinase inhibitor. CONCLUSION: Our results demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of cell lineages contributing to TSC pathogenesis and informs future therapeutics.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Esclerose Tuberosa/fisiopatologia , Esclerose Tuberosa/genética , Humanos , Barreira Hematoencefálica/fisiopatologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Sirolimo/farmacologia , Astrócitos/metabolismo
4.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168450

RESUMO

Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene. Dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). We generated disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. Using these microphysiological systems, we demonstrate that the BBB generated from TSC2 heterozygous mutant cells shows increased permeability which can be rescued by wild type astrocytes and with treatment with rapamycin, an mTOR kinase inhibitor. Our results further demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of the cell lineages contributing to TSC pathogenesis.

5.
Exp Cell Res ; 315(10): 1706-14, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19298813

RESUMO

Cell death is a stochastic process, often initiated and/or executed in a multi-pathway/multi-organelle fashion. Therefore, high-throughput single-cell analysis platforms are required to provide detailed characterization of kinetics and mechanisms of cell death in heterogeneous cell populations. However, there is still a largely unmet need for inert fluorescent probes, suitable for prolonged kinetic studies. Here, we compare the use of innovative adaptation of unsymmetrical SYTO dyes for dynamic real-time analysis of apoptosis in conventional as well as microfluidic chip-based systems. We show that cyanine SYTO probes allow non-invasive tracking of intracellular events over extended time. Easy handling and "stain-no wash" protocols open up new opportunities for high-throughput analysis and live-cell sorting. Furthermore, SYTO probes are easily adaptable for detection of cell death using automated microfluidic chip-based cytometry. Overall, the combined use of SYTO probes and state-of-the-art Lab-on-a-Chip platform emerges as a cost effective solution for automated drug screening compared to conventional Annexin V or TUNEL assays. In particular, it should allow for dynamic analysis of samples where low cell number has so far been an obstacle, e.g. primary cancer stems cells or circulating minimal residual tumors.


Assuntos
Apoptose , Carbocianinas/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Microfluídica/métodos , Bioensaio , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Espaço Intracelular/metabolismo , Procedimentos Analíticos em Microchip , Fatores de Tempo
6.
Fluids Barriers CNS ; 17(1): 38, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493346

RESUMO

BACKGROUND: The United States faces a national crisis involving opioid medications, where currently more than 130 people die every day. To combat this epidemic, a better understanding is needed of how opioids penetrate into the central nervous system (CNS) to facilitate pain relief and, potentially, result in addiction and/or misuse. Animal models, however, are a poor predictor of blood-brain barrier (BBB) transport and CNS drug penetration in humans, and many traditional 2D cell culture models of the BBB and neurovascular unit have inadequate barrier function and weak or inappropriate efflux transporter expression. Here, we sought to better understand opioid transport mechanisms using a simplified microfluidic neurovascular unit (NVU) model consisting of human brain microvascular endothelial cells (BMECs) co-cultured with astrocytes. METHODS: Human primary and induced pluripotent stem cell (iPSC)-derived BMECs were incorporated into a microfluidic NVU model with several technical improvements over our previous design. Passive barrier function was assessed by permeability of fluorescent dextrans with varying sizes, and P-glycoprotein function was assessed by rhodamine permeability in the presence or absence of inhibitors; quantification was performed with a fluorescent plate reader. Loperamide, morphine, and oxycodone permeability was assessed in the presence or absence of P-glycoprotein inhibitors and cortisol; quantification was performed with mass spectrometry. RESULTS: We first report technical and methodological optimizations to our previously described microfluidic model using primary human BMECs, which results in accelerated barrier formation, decreased variability, and reduced passive permeability relative to Transwell models. We then demonstrate proper transport and efflux of loperamide, morphine, and oxycodone in the microfluidic NVU containing BMECs derived from human iPSCs. We further demonstrate that cortisol can alter permeability of loperamide and morphine in a divergent manner. CONCLUSIONS: We reveal a novel role for the stress hormone cortisol in modulating the transport of opioids across the BBB, which could contribute to their abuse or overdose. Our updated BBB model represents a powerful tool available to researchers, clinicians, and drug manufacturers for understanding the mechanisms by which opioids access the CNS.


Assuntos
Analgésicos Opioides/farmacocinética , Astrócitos/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Hidrocortisona/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Neurológicos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Microvasos/citologia
7.
Lab Chip ; 9(18): 2659-64, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19704981

RESUMO

Stem cells hold great promise as a means of treating otherwise incurable, degenerative diseases due to their ability both to self-renew and differentiate. However, stem cell damage can also play a role in the disease with the formation of solid tumors and leukaemias such as chronic myeloid leukaemia (CML), a hematopoietic stem cell (HSC) disorder. Despite recent medical advances, CML remains incurable by drug therapy. Understanding the mechanisms which govern chemoresistance of individual stem cell leukaemias may therefore require analysis at the single cell level. This task is not trivial using current technologies given that isolating HSCs is difficult, expensive, and inefficient due to low cell yield from patients. In addition, hematopoietic cells are largely non-adherent and thus difficult to study over time using conventional cell culture techniques. Hence, there is a need for new microfluidic platforms that allow the functional interrogation of hundreds of non-adherent single cells in parallel. We demonstrate the ability to perform assays, normally performed on the macroscopic scale, within the microfluidic platform using minimal reagents and low numbers of primary cells. We investigated normal and CML stem cell responses to the tyrosine kinase inhibitor, dasatinib, a drug approved for the treatment of CML. Dynamic, on-chip three-color cell viability assays revealed that differences in the responses of normal and CML stem/progenitor cells to dasatinib were observed even in the early phases of exposure, during which time normal cells exhibit a significantly elevated cell death rate, as compared to both controls and CML cells. Further studies show that dasatinib does, however, markedly reduce CML stem/progenitor cell migration in situ.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Microfluídica/métodos , Anexina A5/metabolismo , Apoptose/fisiologia , Divisão Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Dasatinibe , Humanos , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Microscopia de Fluorescência , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/fisiologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico
8.
Anal Chem ; 81(23): 9828-33, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19902928

RESUMO

Lab-on-a-chip technologies have the potential to deliver significant technological advances in modern biomedicine, through the ability to provide appropriate low-cost microenvironments for screening cells. However, to date, few studies have investigated the suitability of poly(dimethylsiloxane) (PDMS) for live cell culture. Here, we describe an inexpensive method for production of reusable, optical-grade PDMS microculture chips which provide a static and self-contained microwell system analogous to conventional polystyrene multiwell plates. We use these structures to probe the effects of PDMS upon live cell culture bioassays, using time-lapse fluorescence imaging to explore the toxicity of the substrate. We use three model systems to explore the efficacy of the microstructured devices: (i) live cell culture, (ii) adenoviral gene delivery to mammalian cells, and (iii) gravity enforced formation of multicellular tumor spheroids (MCTS). Results show that PDMS is nontoxic to cells, as their viability and growth characteristic in PDMS-based platforms is comparable to that of their polystyrene counterparts.


Assuntos
Bioensaio/instrumentação , Bioensaio/métodos , Técnicas de Cultura de Células/métodos , Dimetilpolisiloxanos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Adenoviridae/genética , Animais , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Genes Virais , Vidro/química , Humanos , Espaço Intracelular/metabolismo , Neoplasias/patologia , Esferoides Celulares/metabolismo , Fatores de Tempo
9.
Anal Chem ; 81(13): 5517-23, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19514700

RESUMO

Limitations imposed by conventional analytical technologies for cell biology, such as flow cytometry or microplate imaging, are often prohibitive for the kinetic analysis of single-cell responses to therapeutic compounds. In this paper, we describe the application of a microfluidic array to the real-time screening of anticancer drugs against arrays of single cells. The microfluidic platform comprises an array of micromechanical traps, designed to passively corral individual nonadherent cells. This platform, fabricated in the biologically compatible elastomer poly(dimethylsiloxane), PDMS, enables hydrodynamic trapping of cells in low shear stress zones, enabling time-lapse studies of nonadherent hematopoietic cells. Results indicate that these live-cell, microfluidic microarrays can be readily applied to kinetic analysis of investigational anticancer agents in hematopoietic cancer cells, providing new opportunities for automated microarray cytometry and higher-throughput screening. We also demonstrate the ability to quantify on-chip the anticancer drug induced apoptosis. Specifically, we show that with small numbers of trapped cells (approximately 300) under careful serial observation we can achieve results with only slightly greater statistical spread than can be obtained with single-pass flow cytometer measurements of 15,000-30,000 cells.


Assuntos
Antineoplásicos/análise , Apoptose , Citometria de Fluxo/métodos , Microfluídica/métodos , Análise Serial de Tecidos/métodos , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Células HL-60 , Humanos , Neoplasias/metabolismo , Compostos Orgânicos/química , Coloração e Rotulagem
10.
Anal Chem ; 81(16): 6952-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19572560

RESUMO

Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SY-R), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Proliferação de Células , Dactinomicina/análogos & derivados , Dactinomicina/química , Citometria de Fluxo , Humanos , Microfluídica , Propídio/química
11.
Stem Cell Reports ; 12(3): 474-487, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773484

RESUMO

There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Albuminas/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Dextranos/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Fluoresceína/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo
12.
Lab Chip ; 8(10): 1700-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18813394

RESUMO

Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell-APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, non-adherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 micromx18 micromx10 microm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real time contact- and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in T(N) cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and intercellular signaling events between one or more cell populations.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Microfluídica/instrumentação , Transdução de Sinais , Análise por Conglomerados
13.
SLAS Technol ; 23(6): 592-598, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29787331

RESUMO

The fabrication of engineered vascularized tissues and organs requiring sustained, controlled perfusion has been facilitated by the development of several pump systems. Currently, researchers in the field of tissue engineering require the use of pump systems that are in general large, expensive, and generically designed. Overall, these pumps often fail to meet the unique demands of perfusing clinically useful tissue constructs. Here, we describe a pumping platform that overcomes these limitations and enables scalable perfusion of large, three-dimensional hydrogels. We demonstrate the ability to perfuse multiple separate channels inside hydrogel slabs using a preprogrammed schedule that dictates pumping speed and time. The use of this pump system to perfuse channels in large-scale engineered tissue scaffolds sustained cell viability over several weeks.


Assuntos
Hidrogéis , Perfusão/métodos , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual/métodos , Custos e Análise de Custo , Perfusão/economia , Perfusão/instrumentação , Técnicas de Cultura de Tecidos/economia , Técnicas de Cultura de Tecidos/instrumentação , Engenharia Tecidual/economia , Engenharia Tecidual/instrumentação
14.
Artigo em Inglês | MEDLINE | ID: mdl-29441348

RESUMO

The neurovascular unit (NVU) is composed of neurons, astrocytes, pericytes, and endothelial cells that form the blood-brain barrier (BBB). The NVU regulates material exchange between the bloodstream and the brain parenchyma, and its dysfunction is a primary or secondary cause of many cerebrovascular and neurodegenerative disorders. As such, there are substantial research thrusts in academia and industry toward building NVU models that mimic endogenous organization and function, which could be used to better understand disease mechanisms and assess drug efficacy. Human pluripotent stem cells, which can self-renew indefinitely and differentiate to almost any cell type in the body, are attractive for these models because they can provide a limitless source of individual cells from the NVU. In addition, human-induced pluripotent stem cells (iPSCs) offer the opportunity to build NVU models with an explicit genetic background and in the context of disease susceptibility. Herein, we review how iPSCs are being used to model neurovascular and neurodegenerative diseases, with particular focus on contributions of the BBB, and discuss existing technologies and emerging opportunities to merge these iPSC progenies with biomaterials platforms to create complex NVU systems that recreate the in vivo microenvironment.

15.
ACS Omega ; 2(7): 3583-3594, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28782050

RESUMO

In this study, we demonstrate the theranostic capability of actively targeted, site-specific multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. By utilizing multiplexed surface-enhanced Raman scattering (SERS) imaging, enabled by the narrow peak widths of Raman signatures, we simultaneously targeted immune checkpoint receptor programmed death ligand 1 (PDL1) and the epidermal growth factor receptor (EGFR) overexpressed in TNBC cells. A 1:1 mixture of MGNs functionalized with anti-PDL1 antibodies and Raman tag 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and MGNs functionalized with anti-EGFR antibodies and Raman tag para-mercaptobenzoic acid (pMBA) were incubated with the cells. SERS imaging revealed a cellular traffic map of MGN localization by surface binding and receptor-mediated endocytosis, enabling targeted diagnosis of both biomarkers. Furthermore, cells incubated with anti-EGFR-pMBA-MGNs and illuminated with an 808 nm laser for 15 min at 4.7 W/cm2 exhibited photothermal cell death only within the laser spot (indicated by live/dead cell fluorescence assay). Therefore, this study not only provides an optical imaging platform that can track immunomarkers with spatiotemporal control but also demonstrates an externally controlled light-triggered therapeutic approach enabling receptor-specific treatment with biocompatible theranostic nanoprobes.

16.
IEEE Trans Nanobioscience ; 5(4): 268-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17181026

RESUMO

Antibody-conjugated quantum dots (QDs) have been used to map the expression dynamics of the cytokine receptor interleukin-2 receptor-alpha (IL-2Ralpha) following Jurkat T cell activation. Maximal receptor expression was observed 48 h after activation, followed by a sharp decrease consistent with IL-2R internalization subsequent to IL-2 engagement. Verification of T cell activation and specificity of QD labeling were demonstrated using fluorescence microscopy, ELISA, and FACS analyses. These antibody conjugates provide a versatile means to rapidly determine cell state and interrogate membrane associated proteins involved in cell signaling pathways. Ultimately, incorporation with a microfluidic platform capable of simultaneously monitoring several cell signaling pathways will aid in toxin detection and discrimination.


Assuntos
Citocinas/imunologia , Ativação Linfocitária/imunologia , Microscopia de Fluorescência/métodos , Técnicas de Sonda Molecular , Pontos Quânticos , Linfócitos T/citologia , Linfócitos T/imunologia , Humanos , Células Jurkat , Receptores de Citocinas/imunologia
17.
Adv Healthc Mater ; 5(7): 781-5, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26844941

RESUMO

A 3D microvascularized gelatin hydrogel is produced using thermoresponsive sacrificial poly(N-isopropylacrylamide) microfibers. The capillary-like microvascular network allows constant perfusion of media throughout the thick hydrogel, and significantly improves the viability of human neonatal dermal fibroblasts encapsulated within the gel at a high density.


Assuntos
Gelatina/farmacologia , Hidrogéis/farmacologia , Microvasos/efeitos dos fármacos , Temperatura , Resinas Acrílicas/farmacologia , Derme/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Recém-Nascido , Microscopia Confocal , Perfusão
18.
ACS Omega ; 1(2): 234-243, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27656689

RESUMO

In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 µg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.

19.
Biomicrofluidics ; 9(3): 036501, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26045731

RESUMO

Biomimetic scaffolds approaching physiological scale, whose size and large cellular load far exceed the limits of diffusion, require incorporation of a fluidic means to achieve adequate nutrient/metabolite exchange. This need has driven the extension of microfluidic technologies into the area of biomaterials. While construction of perfusable scaffolds is essentially a problem of microfluidic device fabrication, functional implementation of free-standing, thick-tissue constructs depends upon successful integration of external pumping mechanisms through optimized connective assemblies. However, a critical analysis to identify optimal materials/assembly components for hydrogel substrates has received little focus to date. This investigation addresses this issue directly by evaluating the efficacy of a range of adhesive and mechanical fluidic connection methods to gelatin hydrogel constructs based upon both mechanical property analysis and cell compatibility. Results identify a novel bioadhesive, comprised of two enzymatically modified gelatin compounds, for connecting tubing to hydrogel constructs that is both structurally robust and non-cytotoxic. Furthermore, outcomes from this study provide clear evidence that fluidic interconnect success varies with substrate composition (specifically hydrogel versus polydimethylsiloxane), highlighting not only the importance of selecting the appropriately tailored components for fluidic hydrogel systems but also that of encouraging ongoing, targeted exploration of this issue. The optimization of such interconnect systems will ultimately promote exciting scientific and therapeutic developments provided by microfluidic, cell-laden scaffolds.

20.
Integr Biol (Camb) ; 4(4): 368-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22344285

RESUMO

The oncogenic fusion protein BCR-ABL is produced by chronic myeloid leukemia (CML) cells and functions as an abnormal, constitutively active tyrosine kinase that interferes with normal migratory and apoptotic behaviour of cells. Small molecule tyrosine kinase inhibitors (TKIs), such as dasatinib, eliminate CML progenitor cells, but fail to target the stem cell fraction resulting in persistent disease. In order to achieve a cure for CML in the majority of patients, we need an improved understanding of intracellular signalling dynamics, including the shuttling of BCR-ABL between cytosolic and nuclear compartments. In the past, the instability of BCR-ABL in assays using conventional immunohistochemical techniques has made this difficult and has not allowed for reliable analysis at the single cell level. Here we show how the utilization of rapid on-chip cell fixation within a microfluidic platform provides a means to immunofluorescently analyze the spatiotemporal localization of both BCR-ABL and c-ABL, as well as the linked apoptosis mediator, BCL-XL, in arrays of single CD34+ CML stem/progenitor cells, without cell loss. We demonstrate this proceeds up to 4 times faster than benchtop methods. Our results indicate that whilst both BCR-ABL and c-ABL shuttle from the cytoplasm to the nucleus following dasatinib treatment, the temporal dynamics are not synchronized. The microfluidic platform has the potential to provide insights into the intracellular signalling events in single cells. The ability to examine signalling events and assess BCR-ABL expression/activity in isolated cells in "real-time" may help elucidate the characteristics of rare CML stem cell events, which lead to the resistance of CML stem cells to TKIs.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Técnicas Analíticas Microfluídicas/métodos , Células-Tronco Neoplásicas/metabolismo , Transporte Proteico/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dasatinibe , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/farmacologia , Tiazóis/farmacologia , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA