Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Phenomics ; 2020: 1925495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313543

RESUMO

We report a root system architecture (RSA) traits examination of a larger scale soybean accession set to study trait genetic diversity. Suffering from the limitation of scale, scope, and susceptibility to measurement variation, RSA traits are tedious to phenotype. Combining 35,448 SNPs with an imaging phenotyping platform, 292 accessions (replications = 14) were studied for RSA traits to decipher the genetic diversity. Based on literature search for root shape and morphology parameters, we used an ideotype-based approach to develop informative root (iRoot) categories using root traits. The RSA traits displayed genetic variability for root shape, length, number, mass, and angle. Soybean accessions clustered into eight genotype- and phenotype-based clusters and displayed similarity. Genotype-based clusters correlated with geographical origins. SNP profiles indicated that much of US origin genotypes lack genetic diversity for RSA traits, while diverse accession could infuse useful genetic variation for these traits. Shape-based clusters were created by integrating convolution neural net and Fourier transformation methods, enabling trait cataloging for breeding and research applications. The combination of genetic and phenotypic analyses in conjunction with machine learning and mathematical models provides opportunities for targeted root trait breeding efforts to maximize the beneficial genetic diversity for future genetic gains.

2.
Plant Methods ; 16: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31993072

RESUMO

BACKGROUND: Root system architecture (RSA) traits are of interest for breeding selection; however, measurement of these traits is difficult, resource intensive, and results in large variability. The advent of computer vision and machine learning (ML) enabled trait extraction and measurement has renewed interest in utilizing RSA traits for genetic enhancement to develop more robust and resilient crop cultivars. We developed a mobile, low-cost, and high-resolution root phenotyping system composed of an imaging platform with computer vision and ML based segmentation approach to establish a seamless end-to-end pipeline - from obtaining large quantities of root samples through image based trait processing and analysis. RESULTS: This high throughput phenotyping system, which has the capacity to handle hundreds to thousands of plants, integrates time series image capture coupled with automated image processing that uses optical character recognition (OCR) to identify seedlings via barcode, followed by robust segmentation integrating convolutional auto-encoder (CAE) method prior to feature extraction. The pipeline includes an updated and customized version of the Automatic Root Imaging Analysis (ARIA) root phenotyping software. Using this system, we studied diverse soybean accessions from a wide geographical distribution and report genetic variability for RSA traits, including root shape, length, number, mass, and angle. CONCLUSIONS: This system provides a high-throughput, cost effective, non-destructive methodology that delivers biologically relevant time-series data on root growth and development for phenomics, genomics, and plant breeding applications. This phenotyping platform is designed to quantify root traits and rank genotypes in a common environment thereby serving as a selection tool for use in plant breeding. Root phenotyping platforms and image based phenotyping are essential to mirror the current focus on shoot phenotyping in breeding efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA