Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 622(7982): 402-409, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758951

RESUMO

Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Endorribonucleases , RNA de Interação com Piwi , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Elementos de DNA Transponíveis/genética , Endorribonucleases/química , Endorribonucleases/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , RNA de Interação com Piwi/química , RNA de Interação com Piwi/genética , RNA de Interação com Piwi/metabolismo , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo
2.
Genes Dev ; 35(17-18): 1304-1323, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34413138

RESUMO

Piwi-interacting RNAs (piRNAs) constitute a class of small RNAs that bind PIWI proteins and are essential to repress transposable elements in the animal germline, thereby promoting genome stability and maintaining fertility. C. elegans piRNAs (21U RNAs) are transcribed individually from minigenes as precursors that require 5' and 3' processing. This process depends on the PETISCO complex, consisting of four proteins: IFE-3, TOFU-6, PID-3, and ERH-2. We used biochemical and structural biology approaches to characterize the PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. These two proteins define different PETISCO functions: PID-1 governs 21U processing, whereas TOST-1 links PETISCO to an unknown process essential for early embryogenesis. Here, we show that PETISCO forms an octameric assembly with each subunit present in two copies. Determination of structures of the TOFU-6/PID-3 and PID-3/ERH-2 subcomplexes, supported by in vivo studies of subunit interaction mutants, allows us to propose a model for the formation of the TOFU-6/PID-3/ERH-2 core complex and its functionality in germ cells and early embryos. Using NMR spectroscopy, we demonstrate that TOST-1 and PID-1 bind to a common surface on ERH-2, located opposite its PID-3 binding site, explaining how PETISCO can mediate different cellular roles.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Elementos de DNA Transponíveis , Células Germinativas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
PLoS Genet ; 19(2): e1010645, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36780433

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1010150.].

4.
PLoS Genet ; 18(4): e1010150, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442950

RESUMO

Proximity-dependent labeling approaches such as BioID have been a great boon to studies of protein-protein interactions in the context of cytoskeletal structures such as centrosomes which are poorly amenable to traditional biochemical approaches like immunoprecipitation and tandem affinity purification. Yet, these methods have so far not been applied extensively to invertebrate experimental models such as C. elegans given the long labeling times required for the original promiscuous biotin ligase variant BirA*. Here, we show that the recently developed variant TurboID successfully probes the interactomes of both stably associated (SPD-5) and dynamically localized (PLK-1) centrosomal components. We further develop an indirect proximity labeling method employing a GFP nanobody-TurboID fusion, which allows the identification of protein interactors in a tissue-specific manner in the context of the whole animal. Critically, this approach utilizes available endogenous GFP fusions, avoiding the need to generate multiple additional strains for each target protein and the potential complications associated with overexpressing the protein from transgenes. Using this method, we identify homologs of two highly conserved centriolar components, Cep97 and BLD10/Cep135, which are present in various somatic tissues of the worm. Surprisingly, neither protein is expressed in early embryos, likely explaining why these proteins have escaped attention until now. Our work expands the experimental repertoire for C. elegans and opens the door for further studies of tissue-specific variation in centrosome architecture.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Biotinilação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Centríolos , Centrossomo , Proteínas Serina-Treonina Quinases
5.
Nucleic Acids Res ; 49(9): 5294-5307, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877360

RESUMO

Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mucor/enzimologia , Ribonuclease III/química , Ribonuclease III/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Modelos Moleculares , Mucorales/enzimologia , Mucorales/patogenicidade , Domínios Proteicos , RNA/metabolismo , Ribonuclease III/genética , Virulência
6.
Mol Cell ; 55(6): 856-867, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25175027

RESUMO

The TRAMP complex is involved in the nuclear surveillance and turnover of noncoding RNAs and intergenic transcripts. TRAMP is associated with the nuclear exosome and consists of a poly(A)polymerase subcomplex (Trf4-Air2) and a helicase (Mtr4). We found that N-terminal low-complexity regions of Trf4 and Air2 bind Mtr4 in a cooperative manner. The 2.4 Å resolution crystal structure of the corresponding ternary complex reveals how Trf4 and Air2 wrap around the DExH core of the helicase. Structure-based mutations on the DExH core impair binding to Trf4 and Air2, and also to Trf5 and Air1. The combination of structural, biochemical, and biophysical data suggests that the poly(A)polymerase core of Trf4-Air2 is positioned below the base of the helicase, where the unwound 3' end of an RNA substrate is expected to emerge. The results reveal conceptual similarities between the two major regulators of the exosome, the nuclear TRAMP and cytoplasmic Ski complexes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Domínio Catalítico , Núcleo Celular/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , DNA Polimerase Dirigida por DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Helicases/genética , Saccharomyces cerevisiae/citologia
7.
J Acoust Soc Am ; 152(3): 1425, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182323

RESUMO

The presented filtering technique is proposed to detect errors and correct outliers inside the acoustic sources, respectively, the first time derivative of the incompressible pressure obtained from large eddy simulations with prescribed vocal fold motion using overlay mesh methods. Regarding the perturbed convective wave equation, the time derivative of the incompressible pressure is the primary sound source in the human phonation process. However, the incompressible pressure can be erroneous and have outliers when fulfilling the divergence-free constraint of the velocity field. This error is primarily occurring for non-conserving prescribed vocal fold motions. Therefore, the method based on a continuous stationary random process was designed to detect rare events in the time derivative of the pressure. The detected events are then localized and treated by a defined window function to increase their probability. As a consequence, the data quality of the non-linearly filtered data is enhanced significantly. Furthermore, the proposed method can also be used to assess convergence of the aeroacoustic source terms, and detect regions and time intervals, which show a non-converging behavior by an impulse-like structure.


Assuntos
Modelos Biológicos , Voz , Acústica , Humanos , Fonação , Prega Vocal
8.
J Acoust Soc Am ; 147(2): 1179, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113301

RESUMO

A hybrid aeroacoustic approach was developed for the efficient numerical computation of human phonation. In the first step, an incompressible flow simulation on a three-dimensional (3 D) computational grid, which is capable of resolving all relevant turbulent scales, is performed using STARCCM+ and finite volume method. In the second step, the acoustic source terms on the flow grid are computed and a conservative interpolation to the acoustic grid is performed. Finally, the perturbed convective wave equation is solved to obtain the acoustic field in 3 D with the finite element solver CFS++. Thereby, the conservative transformation of the acoustic sources from the flow grid to the acoustic grid is a key step to allow coarse acoustic grids without reducing accuracy. For this transformation, two different interpolation strategies are compared and grid convergence is assessed. Overall, 16 simulation setups are compared. The initial (267 000 degrees of freedom) and the optimized (21 265 degrees of freedom) simulation setup were validated by measurements of a synthetic larynx model. To conclude, the total computational time of the acoustic simulation is reduced by 95% compared to the initial simulation setup without a significant reduction of accuracy, being 7%, in the frequency range of interest.


Assuntos
Laringe , Fonação , Acústica , Simulação por Computador , Humanos , Laringe/diagnóstico por imagem
9.
RNA ; 23(12): 1780-1787, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28883156

RESUMO

The nuclear exosome and the associated RNA helicase Mtr4 participate in the processing of several ribonucleoprotein particles (RNP), including the maturation of the large ribosomal subunit (60S). S. cerevisiae Mtr4 interacts directly with Nop53, a ribosomal biogenesis factor present in late pre-60S particles containing precursors of the 5.8S rRNA. The Mtr4-Nop53 interaction plays a pivotal role in the maturation of the 5.8S rRNA, providing a physical link between the nuclear exosome and the pre-60S RNP. An analogous interaction between Mtr4 and another ribosome biogenesis factor, Utp18, directs the exosome to an earlier preribosomal particle. Nop53 and Utp18 contain a similar Mtr4-binding motif known as the arch-interacting motif (AIM). Here, we report the 3.2 Å resolution crystal structure of S. cerevisiae Mtr4 bound to the interacting region of Nop53, revealing how the KOW domain of the helicase recognizes the AIM sequence of Nop53 with a network of hydrophobic and electrostatic interactions. The AIM-interacting residues are conserved in Mtr4 and are not present in the related cytoplasmic helicase Ski2, rationalizing the specificity and versatility of Mtr4 in the recognition of different AIM-containing proteins. Using nuclear magnetic resonance (NMR), we show that the KOW domain of Mtr4 can simultaneously bind an AIM-containing protein and a structured RNA at adjacent surfaces, suggesting how it can dock onto RNPs. The KOW domains of exosome-associated helicases thus appear to have evolved from the KOW domains of ribosomal proteins and to function as RNP-binding modules in the context of the nuclear exosome.


Assuntos
Núcleo Celular/enzimologia , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Exossomos/enzimologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , Proteínas Nucleares/genética , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência
10.
EMBO J ; 33(23): 2829-46, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25319414

RESUMO

The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo-10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N-terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N-terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C-terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6-Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Western Blotting , Calorimetria , Cromatografia em Gel , Cristalização , RNA Helicases DEAD-box/química , Proteínas de Ligação a DNA/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Complexo Multienzimático de Ribonucleases do Exossomo/química , Polarização de Fluorescência , Complexos Multiproteicos/química , Proteínas Nucleares/química , Sondas de Oligonucleotídeos , Conformação Proteica , Proteínas de Ligação a RNA/química , Corantes de Rosanilina , Proteínas de Saccharomyces cerevisiae/química
11.
BMC Evol Biol ; 13: 7, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23305080

RESUMO

BACKGROUND: Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. RESULTS: Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations. CONCLUSIONS: The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.


Assuntos
Adaptação Biológica/genética , Temperatura Alta , Filogenia , Sordariales/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Evolução Biológica , Genoma Fúngico , Dados de Sequência Molecular , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteoma/genética , Sordariales/classificação
12.
J Biol Chem ; 286(34): 30010-21, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21733841

RESUMO

Ring-forming AAA(+) ATPases act in a plethora of cellular processes by remodeling macromolecules. The specificity of individual AAA(+) proteins is achieved by direct or adaptor-mediated association with substrates via distinct recognition domains. We investigated the molecular basis of substrate interaction for Vibrio cholerae ClpV, which disassembles tubular VipA/VipB complexes, an essential step of type VI protein secretion and bacterial virulence. We identified the ClpV recognition site within VipB, showed that productive ClpV-VipB interaction requires the oligomeric state of both proteins, solved the crystal structure of a ClpV N-domain-VipB peptide complex, and verified the interaction surface by mutant analysis. Our results show that the substrate is bound to a hydrophobic groove, which is formed by the addition of a single α-helix to the core N-domain. This helix is absent from homologous N-domains, explaining the unique substrate specificity of ClpV. A limited interaction surface between both proteins accounts for the dramatic increase in binding affinity upon ATP-driven ClpV hexamerization and VipA/VipB tubule assembly by coupling multiple weak interactions. This principle ensures ClpV selectivity toward the VipA/VipB macromolecular complex.


Assuntos
Adenosina Trifosfatases/química , Sistemas de Secreção Bacterianos/fisiologia , Chaperonas Moleculares/química , Multimerização Proteica/fisiologia , Vibrio cholerae/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Diagnostics (Basel) ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35885507

RESUMO

Understanding the risk of infection by routine medical examination is important for the protection of the medical personnel. In this study we investigated respiratory particles emitted by patients during routine otolaryngologic procedures and assessed the risks for the performing physician. We developed two experimental setups to measure aerosol and droplet emission during rigid/flexible laryngoscopy, rhinoscopy, pharyngoscopy, otoscopy, sonography and patient interview for subjects with and without masks. A high-speed-camera setup was used to detect ballistic droplets (approx. > 100 µm) and an aerosol-particle-sizer was used to detect aerosol particles in the range of 0.3 µm to 10 µm. Aerosol particle counts were highly increased for coughing and slightly increased for heavy breathing in subjects without masks. The highest aerosol particle counts occurred during rigid laryngoscopy. During laryngoscopy and rhinoscopy, the examiner was exposed to increased particle emission due to close proximity to the patient's face and provoked events such as coughing. However, even during sonography or otoscopy without a mask, aerosol particles were expelled close to the examiner. The physician's exposure to respiratory particles can be reduced by deliberate choice of examination technique depending on medical indication and the use of appropriate equipment for the examiners and the patients (e.g., FFP2 masks for both).

14.
Sci Adv ; 8(7): eabl8861, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171669

RESUMO

Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.

15.
J Biol Chem ; 285(28): 21655-61, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20498370

RESUMO

The biosynthesis of most membrane proteins is directly coupled to membrane insertion, and therefore, molecular chaperones are not required. The light-harvesting chlorophyll a,b-binding proteins (LHCPs) present a prominent exception as they are synthesized in the cytoplasm, and after import into the chloroplast, they are targeted and inserted into the thylakoid membrane. Upon arrival in the stroma, LHCPs form a soluble transit complex with the chloroplast signal recognition particle (cpSRP) consisting of an SRP54 homolog and the unique cpSRP43 composed of three chromodomains and four ankyrin repeats. Here we describe that cpSRP43 alone prevents aggregation of LHCP by formation of a complex with nanomolar affinity, whereas cpSRP54 is not required for this chaperone activity. Other stromal chaperones like trigger factor cannot replace cpSRP43, which implies that LHCPs require a specific chaperone. Although cpSRP43 does not have an ATPase activity, it can dissolve aggregates of LHCPs similar to chaperones of the Hsp104/ClpB family. We show that the LHCP-cpSRP43 interaction is predominantly hydrophobic but strictly depends on an intact DPLG motif between the second and third transmembrane region. The cpSRP43 ankyrin repeats that provide the binding site for the DPLG motif are sufficient for the chaperone function, whereas the chromodomains are dispensable. Taken together, we define cpSRP43 as a highly specific chaperone for LHCPs in addition to its established function as a targeting factor for this family of membrane proteins.


Assuntos
Complexos de Proteínas Captadores de Luz/fisiologia , Fotossíntese , Partícula de Reconhecimento de Sinal/fisiologia , Motivos de Aminoácidos , Anquirinas/química , Sítios de Ligação , Membrana Celular/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos , Cloroplastos/metabolismo , Proteínas de Choque Térmico/química , Complexos de Proteínas Captadores de Luz/química , Chaperonas Moleculares/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Partícula de Reconhecimento de Sinal/química
16.
J Biol Chem ; 285(8): 5954-62, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018841

RESUMO

The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dobramento de Proteína , Partícula de Reconhecimento de Sinal/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Partícula de Reconhecimento de Sinal/genética , Tilacoides/genética
17.
Front Physiol ; 12: 616985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762964

RESUMO

For the clinical analysis of underlying mechanisms of voice disorders, we developed a numerical aeroacoustic larynx model, called simVoice, that mimics commonly observed functional laryngeal disorders as glottal insufficiency and vibrational left-right asymmetries. The model is a combination of the Finite Volume (FV) CFD solver Star-CCM+ and the Finite Element (FE) aeroacoustic solver CFS++. simVoice models turbulence using Large Eddy Simulations (LES) and the acoustic wave propagation with the perturbed convective wave equation (PCWE). Its geometry corresponds to a simplified larynx and a vocal tract model representing the vowel /a/. The oscillations of the vocal folds are externally driven. In total, 10 configurations with different degrees of functional-based disorders were simulated and analyzed. The energy transfer between the glottal airflow and the vocal folds decreases with an increasing glottal insufficiency and potentially reflects the higher effort during speech for patients being concerned. This loss of energy transfer may also have an essential influence on the quality of the sound signal as expressed by decreasing sound pressure level (SPL), Cepstral Peak Prominence (CPP), and Vocal Efficiency (VE). Asymmetry in the vocal fold oscillations also reduces the quality of the sound signal. However, simVoice confirmed previous clinical and experimental observations that a high level of glottal insufficiency worsens the acoustic signal quality more than oscillatory left-right asymmetry. Both symptoms in combination will further reduce the quality of the sound signal. In summary, simVoice allows for detailed analysis of the origins of disordered voice production and hence fosters the further understanding of laryngeal physiology, including occurring dependencies. A current walltime of 10 h/cycle is, with a prospective increase in computing power, auspicious for a future clinical use of simVoice.

18.
Methods Mol Biol ; 2062: 491-513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768992

RESUMO

The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3'-end. It comprises the major 3'-to-5' exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Exossomos/metabolismo , RNA/metabolismo , RNA Fúngico/metabolismo , Células Sf9
19.
Nat Commun ; 10(1): 3393, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358741

RESUMO

The nuclear exosome and its essential co-factor, the RNA helicase MTR4, play crucial roles in several RNA degradation pathways. Besides unwinding RNA substrates for exosome-mediated degradation, MTR4 associates with RNA-binding proteins that function as adaptors in different RNA processing and decay pathways. Here, we identify and characterize the interactions of human MTR4 with a ribosome processing adaptor, NVL, and with ZCCHC8, an adaptor involved in the decay of small nuclear RNAs. We show that the unstructured regions of NVL and ZCCHC8 contain short linear motifs that bind the MTR4 arch domain in a mutually exclusive manner. These short sequences diverged from the arch-interacting motif (AIM) of yeast rRNA processing factors. Our results suggest that nuclear exosome adaptors have evolved canonical and non-canonical AIM sequences to target human MTR4 and demonstrate the versatility and specificity with which the MTR4 arch domain can recruit a repertoire of different RNA-binding proteins.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Exossomos/genética , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Exossomos/metabolismo , Células HeLa , Humanos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , RNA Helicases/química , RNA Helicases/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32493762

RESUMO

The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA