Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Microbiol Rev ; 37(1): e0014223, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294218

RESUMO

Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Micoses/microbiologia , Farmacorresistência Fúngica
2.
Eur Arch Otorhinolaryngol ; 279(6): 3189-3199, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35102476

RESUMO

PURPOSE: Endoscopic techniques have been widely applied for challenging cranial base surgeries in recent years. In this study, we evaluated the safety and efficacy of using the endoscopic endo-nasal route for various skull base pathologies in terms of postoperative complications. METHODS: A total of 584 consecutive patients who underwent endoscopic skull base surgery were studied. Peri- and post-operative complications and risk factors affecting the occurrence of these complications were evaluated. RESULTS: 648 endoscopic skull base surgical procedures were performed on 584 patients (47.8% females and 52.2% males) with the mean age of 41.2 years. Pituitary adenoma (69.3%) was the most common pathology. Post-operative mortality was 2.0%. The rates of post-operative permanent neurological deficit (one case of 6th nerve injury, two 12th nerve injuries and one hemiparesis) and visual deterioration were 0.6% and 1.5%, respectively. Ten patients (1.7%) were complicated with meningitis and it was the cause of death in 3. Systemic complications not directly attributable to skull base surgical access occurred in 2% (11 patients) with 5 mortalities. The rate of intra-operative vascular injury was 1% and among them one patient died due to PCA injury. The most common post-operative complications were diabetes insipidus (12.5%), anterior pituitary dysfunction (10.6%) and CSF leak (3.6%), respectively. In general, reoperation, malignant lesions, and level IV of surgical complexity were associated with a higher incidence of complications. CONCLUSION: Endoscopic endo-nasal approach can be a safe and less-morbid first-line treatment of patients with various skull base lesions.


Assuntos
Adenoma , Neoplasias Hipofisárias , Neoplasias da Base do Crânio , Adenoma/complicações , Adenoma/cirurgia , Adulto , Vazamento de Líquido Cefalorraquidiano/epidemiologia , Vazamento de Líquido Cefalorraquidiano/etiologia , Endoscopia/efeitos adversos , Endoscopia/métodos , Feminino , Humanos , Masculino , Neoplasias Hipofisárias/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Estudos Retrospectivos , Base do Crânio/cirurgia , Neoplasias da Base do Crânio/cirurgia
3.
Microbiol Spectr ; 12(4): e0409523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376363

RESUMO

Candida albicans, one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug's target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida, including Candida auris and Candida glabrata, with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus. Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicansIMPORTANCEThe worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans. Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus. Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.


Assuntos
Produtos Biológicos , Micoses , Xantonas , Humanos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Farmacorresistência Fúngica , Quelantes/farmacologia , Quelantes/uso terapêutico , Aspergillus fumigatus , Ferro , Xantonas/uso terapêutico , Testes de Sensibilidade Microbiana
4.
Cell Chem Biol ; 30(7): 795-810.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369212

RESUMO

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Aspergillus fumigatus , Virulência , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA