Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 36(5): 734-755, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285732

RESUMO

The intent of this review article is to serve as an overview of current research regarding the neural characteristics of motor learning in Alzheimer disease (AD) as well as prodromal phases of AD: at-risk populations, and mild cognitive impairment. This review seeks to provide a cognitive framework to compare various motor tasks. We will highlight the neural characteristics related to cognitive domains that, through imaging, display functional or structural changes because of AD progression. In turn, this motivates the use of motor learning paradigms as possible screening techniques for AD and will build upon our current understanding of learning abilities in AD populations.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Neuroimagem/métodos , Disfunção Cognitiva/diagnóstico por imagem , Aprendizagem
2.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594906

RESUMO

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Assuntos
Encéfalo , Circulação Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão
3.
Neuroimage ; 273: 120068, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003447

RESUMO

Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.


Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Ferro/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores de GABA/metabolismo
4.
Hum Brain Mapp ; 44(18): 6537-6551, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37950750

RESUMO

Systemic physiological dynamics, such as heart rate variability (HRV) and respiration volume per time (RVT), are known to account for significant variance in the blood oxygen level dependent (BOLD) signal of resting-state functional magnetic resonance imaging (rsfMRI). However, synchrony between these cardiorespiratory changes and the BOLD signal could be due to neuronal (i.e., autonomic activity inducing changes in heart rate and respiration) or vascular (i.e., cardiorespiratory activity facilitating hemodynamic changes and thus the BOLD signal) effects and the contributions of these effects may differ spatially, temporally, and spectrally. In this study, we characterize these brain-body dynamics using a wavelet analysis in rapidly sampled rsfMRI data with simultaneous pulse oximetry and respiratory monitoring of the Human Connectome Project. Our time-frequency analysis across resting-state networks (RSNs) revealed differences in the coherence of the BOLD signal and heartbeat interval (HBI)/RVT dynamics across frequencies, with unique profiles per network. Somatomotor (SMN), visual (VN), and salience (VAN) networks demonstrated the greatest synchrony with both systemic physiological signals when compared to other networks; however, significant coherence was observed in all RSNs regardless of direct autonomic involvement. Our phase analysis revealed distinct frequency profiles of percentage of time with significant coherence between BOLD and systemic physiological signals for different phase offsets across RSNs, suggesting that the phase offset and temporal order of signals varies by frequency. Lastly, our analysis of temporal variability of coherence provides insight on potential influence of autonomic state on brain-body communication. Overall, the novel wavelet analysis enables an efficient characterization of the dynamic relationship between cardiorespiratory activity and the BOLD signal in spatial, temporal, and spectral dimensions to inform our understanding of autonomic states and improve our interpretation of the BOLD signal.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Saturação de Oxigênio , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Respiração
5.
Hum Brain Mapp ; 44(14): 4938-4955, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498014

RESUMO

Resting-state (rs) functional magnetic resonance imaging (fMRI) is used to detect low-frequency fluctuations in the blood oxygen-level dependent (BOLD) signal across brain regions. Correlations between temporal BOLD signal fluctuations are commonly used to infer functional connectivity. However, because BOLD is based on the dilution of deoxyhemoglobin, it is sensitive to veins of all sizes, and its amplitude is biased by draining veins. These biases affect local BOLD signal location and amplitude, and may also influence BOLD-derived connectivity measures, but the magnitude of this venous bias and its relation to vein size and proximity is unknown. Here, veins were identified using high-resolution quantitative susceptibility maps and utilized in a biophysical model to investigate systematic venous biases on common local rsfMRI-derived measures. Specifically, we studied the impact of vein diameter and distance to veins on the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), Hurst exponent (HE), regional homogeneity (ReHo), and eigenvector centrality values in the grey matter. Values were higher across all distances in smaller veins, and decreased with increasing vein diameter. Additionally, rsfMRI values associated with larger veins decrease with increasing distance from the veins. ALFF and ReHo were the most biased by veins, while HE and fALFF exhibited the smallest bias. Across all metrics, the amplitude of the bias was limited in voxel-wise data, confirming that venous structure is not the dominant source of contrast in these rsfMRI metrics. Finally, the models presented can be used to correct this venous bias in rsfMRI metrics.


Assuntos
Benchmarking , Mapeamento Encefálico , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos
6.
Radiology ; 303(3): 620-631, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191738

RESUMO

Background The PET tracer (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) targets the system xC- cotransporter, which is overexpressed in various tumors. Purpose To assess the role of 18F-FSPG PET/CT in intracranial malignancies. Materials and Methods Twenty-six patients (mean age, 54 years ± 12; 17 men; 48 total lesions) with primary brain tumors (n = 17) or brain metastases (n = 9) were enrolled in this prospective, single-center study (ClinicalTrials.gov identifier: NCT02370563) between November 2014 and March 2016. A 30-minute dynamic brain 18F-FSPG PET/CT scan and a static whole-body (WB) 18F-FSPG PET/CT scan at 60-75 minutes were acquired. Moreover, all participants underwent MRI, and four participants underwent fluorine 18 (18F) fluorodeoxyglucose (FDG) PET imaging. PET parameters and their relative changes were obtained for all lesions. Kinetic modeling was used to estimate the 18F-FSPG tumor rate constants using the dynamic and dynamic plus WB PET data. Imaging parameters were correlated to lesion outcomes, as determined with follow-up MRI and/or pathologic examination. The Mann-Whitney U test or Student t test was used for group mean comparisons. Receiver operating characteristic curve analysis was used for performance comparison of different decision measures. Results 18F-FSPG PET/CT helped identify all 48 brain lesions. The mean tumor-to-background ratio (TBR) on the whole-brain PET images at the WB time point was 26.6 ± 24.9 (range: 2.6-150.3). When 18F-FDG PET was performed, 18F-FSPG permitted visualization of non-18F-FDG-avid lesions or allowed better lesion differentiation from surrounding tissues. In participants with primary brain tumors, the predictive accuracy of the relative changes in influx rate constant Ki and maximum standardized uptake value to discriminate between poor and good lesion outcomes were 89% and 81%, respectively. There were significant differences in the 18F-FSPG uptake curves of lesions with good versus poor outcomes in the primary brain tumor group (P < .05) but not in the brain metastases group. Conclusion PET/CT imaging with (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) helped detect primary brain tumors and brain metastases with a high tumor-to-background ratio. Relative changes in 18F-FSPG uptake with multi-time-point PET appear to be helpful in predicting lesion outcomes. Clinical trial registration no. NCT02370563 © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Neoplasias Encefálicas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Encefálicas/diagnóstico por imagem , Fluordesoxiglucose F18 , Ácido Glutâmico , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos
7.
Clin Diabetes ; 40(1): 87-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221477

RESUMO

Quality Improvement Success Stories are published by the American Diabetes Association in collaboration with the American College of Physicians and the National Diabetes Education Program. This series is intended to highlight best practices and strategies from programs and clinics that have successfully improved the quality of care for people with diabetes or related conditions. Each article in the series is reviewed and follows a standard format developed by the editors of Clinical Diabetes. The following article describes an initiative to increase rates of diabetes screening in a large multisite academic health system in the greater Ann Arbor, MI, area.

8.
Neuroimage ; 233: 117955, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33716155

RESUMO

Cerebrovascular reactivity (CVR) reflects the capacity of the brain to meet changing physiological demands and can predict the risk of cerebrovascular diseases. CVR can be obtained by measuring the change in cerebral blood flow (CBF) during a brain stress test where CBF is altered by a vasodilator such as acetazolamide. Although the gold standard to quantify CBF is PET imaging, the procedure is invasive and inaccessible to most patients. Arterial spin labeling (ASL) is a non-invasive and quantitative MRI method to measure CBF, and a consensus guideline has been published for the clinical application of ASL. Despite single post labeling delay (PLD) pseudo-continuous ASL (PCASL) being the recommended ASL technique for CBF quantification, it is sensitive to variations to the arterial transit time (ATT) and labeling efficiency induced by the vasodilator in CVR studies. Multi-PLD ASL controls for the changes in ATT, and velocity selective ASL is in theory insensitive to both ATT and labeling efficiency. Here we investigate CVR using simultaneous 15O-water PET and ASL MRI data from 19 healthy subjects. CVR and CBF measured by the ASL techniques were compared using PET as the reference technique. The impacts of blood T1 and labeling efficiency on ASL were assessed using individual measurements of hematocrit and flow velocity data of the carotid and vertebral arteries measured using phase-contrast MRI. We found that multi-PLD PCASL is the ASL technique most consistent with PET for CVR quantification (group mean CVR of the whole brain = 42±19% and 40±18% respectively). Single-PLD ASL underestimated the CVR of the whole brain significantly by 15±10% compared with PET (p<0.01, paired t-test). Changes in ATT pre- and post-acetazolamide was the principal factor affecting ASL-based CVR quantification. Variations in labeling efficiency and blood T1 had negligible effects.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , Imageamento por Ressonância Magnética/normas , Tomografia por Emissão de Pósitrons/normas , Marcadores de Spin , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/diagnóstico por imagem , Feminino , Hematócrito/métodos , Hematócrito/normas , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Radioisótopos de Oxigênio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fatores de Tempo , Água/metabolismo
9.
Eur J Nucl Med Mol Imaging ; 48(7): 2233-2244, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572562

RESUMO

PURPOSE: In vivo measurement of the spatial distribution of neurofibrillary tangle pathology is critical for early diagnosis and disease monitoring of Alzheimer's disease (AD). METHODS: Forty-nine participants were scanned with 18F-PI-2620 PET to examine the distribution of this novel PET ligand throughout the course of AD: 36 older healthy controls (HC) (age range 61 to 86), 11 beta-amyloid+ (Aß+) participants with cognitive impairment (CI; clinical diagnosis of either mild cognitive impairment or AD dementia, age range 57 to 86), and 2 participants with semantic variant primary progressive aphasia (svPPA, age 66 and 78). Group differences in brain regions relevant in AD (medial temporal lobe, posterior cingulate cortex, and lateral parietal cortex) were examined using standardized uptake value ratios (SUVRs) normalized to the inferior gray matter of the cerebellum. RESULTS: SUVRs in target regions were relatively stable 60 to 90 min post-injection, with the exception of very high binders who continued to show increases over time. Robust elevations in 18F-PI-2620 were observed between HC and Aß+ CI across all AD regions. Within the HC group, older age was associated with subtle elevations in target regions. Mildly elevated focal uptake was observed in the anterior temporal pole in one svPPA patient. CONCLUSION: Preliminary results suggest strong differences in the medial temporal lobe and cortical regions known to be impacted in AD using 18F-PI-2620 in patients along the AD trajectory. This work confirms that 18F-PI-2620 holds promise as a tool to visualize tau aggregations in AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Carbolinas , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
10.
J Am Pharm Assoc (2003) ; 61(3): e107-e113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33353833

RESUMO

BACKGROUND: Trained community pharmacists provided hypertension (HTN) management services in collaboration with a patient-centered medical home (PCMH). OBJECTIVE: To explore primary care provider (PCP) perceptions of a HTN management program in which patients at the PCMH with elevated blood pressure could choose to receive follow-up care with a trained community pharmacist at a chain community pharmacy. METHODS: We conducted informal interviews with 8 PCPs with a range of level of involvement with the collaborative HTN management program to inform the development of a 13-question online survey that was distributed to PCPs at 10 participating Michigan Medicine PCMH clinics. The primary outcome was the percent of PCPs who reported that the program improved their patient's blood pressure. Secondary outcomes included awareness of the program, alternative follow-up strategies, PCP satisfaction, and barriers to using the program. RESULTS: A total of 39 PCPs (30.0%) responded to the survey. More than one-half (n = 21 of 39, 53.9%) of respondents reported that at least 1 of their patients had seen a trained community pharmacist for HTN management services. Almost all of these PCPs (n = 19 of 21, 90.5%) reported being satisfied with the program, and 80.9% (n = 17 of 21) agreed that it helped patients improve their blood pressure control. The most common barriers identified were patients preferring to follow up directly with their PCP (n = 18 of 39, 46.2%), PCPs being more comfortable with patients having a visit with an embedded ambulatory care pharmacist (n = 16 of 39, 41.0%), and a lack of written materials to share with patients about the program (n = 15 of 39, 38.5%). CONCLUSION: PCPs who used the integrated community pharmacy HTN management program were satisfied with the program and thought that it resulted in improved blood pressure control. PCPs may benefit from written information to share with their patients as well as education to increase their awareness of the program and its beneficial effect on patient blood pressure.


Assuntos
Hipertensão , Farmácias , Humanos , Hipertensão/tratamento farmacológico , Assistência Centrada no Paciente , Percepção , Farmacêuticos
11.
Neuroimage ; 220: 117136, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634594

RESUMO

Oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2) are key cerebral physiological parameters to identify at-risk cerebrovascular patients and understand brain health and function. PET imaging with [15O]-oxygen tracers, either through continuous or bolus inhalation, provides non-invasive assessment of OEF and CMRO2. Numerous tracer delivery, PET acquisition, and kinetic modeling approaches have been adopted to map brain oxygenation. The purpose of this technical review is to critically evaluate different methods for [15O]-gas PET and its impact on the accuracy and reproducibility of OEF and CMRO2 measurements. We perform a meta-analysis of brain oxygenation PET studies in healthy volunteers and compare between continuous and bolus inhalation techniques. We also describe OEF metrics that have been used to detect hemodynamic impairment in cerebrovascular disease. For these patients, advanced techniques to accelerate the PET scans and potential synthesis with MRI to avoid arterial blood sampling would facilitate broader use of [15O]-oxygen PET for brain physiological assessment.


Assuntos
Encéfalo/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Humanos
12.
Radiology ; 296(3): 627-637, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662761

RESUMO

Background Cerebrovascular reserve (CVR) may be measured by using an acetazolamide test to clinically evaluate patients with cerebrovascular disease. However, acetazolamide use may be contraindicated and/or undesirable in certain clinical settings. Purpose To predict CVR images generated from acetazolamide vasodilation with a deep learning network by using only images before acetazolamide administration. Materials and Methods Simultaneous oxygen 15 (15O)-labeled water PET/MRI before and after acetazolamide injection were retrospectively analyzed for patients with Moyamoya disease and healthy control participants from April 2017 to May 2019. Inputs to deep learning models were perfusion-based images (arterial spin labeling [ASL]), structural scans (T2 fluid-attenuated inversion-recovery, T1), and brain location. Two models, that is, 15O-labeled water PET cerebral blood flow (CBF) and MRI (PET-plus-MRI model) before acetazolamide administration and only MRI (MRI-only model) before acetazolamide administration, were trained and tested with sixfold cross-validation. The models learned to predict a voxelwise relative CBF change (rΔCBF) map by using rΔCBF measured with PET due to acetazolamide as ground truth. Quantitative analysis included image quality metrics (peak signal-to-noise ratio, root mean square error, and structural similarity index), as well as comparison between the various methods by using correlation and Bland-Altman analyses. Identification of vascular territories with impaired rΔCBF was evaluated by using receiver operating characteristic metrics. Results Thirty-six participants were included: 24 patients with Moyamoya disease (mean age ± standard deviation, 41 years ± 12; 17 women) and 12 age-matched healthy control participants (mean age, 39 years ± 16; nine women). The rΔCBF maps predicted by both deep learning models demonstrated better image quality metrics than did ASL (all P < .001 in patients) and higher correlation coefficient with PET than with ASL (PET-plus-MRI model, 0.704; MRI-only model, 0.690 vs ASL, 0.432; both P < .001 in patients). Both models also achieved high diagnostic performance in identifying territories with impaired rΔCBF (area under receiver operating characteristic curve, 0.95 for PET-plus-MRI model [95% confidence interval: 0.90, 0.99] and 0.95 for MRI-only model [95% confidence interval: 0.91, 0.98]). Conclusion By using only images before acetazolamide administration, PET-plus-MRI and MRI-only deep learning models predicted cerebrovascular reserve images without the need for vasodilator injection. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Adulto , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/diagnóstico por imagem , Projetos Piloto , Adulto Jovem
13.
J Magn Reson Imaging ; 51(1): 183-194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044459

RESUMO

BACKGROUND: H215 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE: To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H215 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE: Observational. SUBJECTS: Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES: 3T/2D cardiac-gated phase-contrast MRI and H215 O-PET. ASSESSMENT: PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS: The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H215 O-PET in future studies. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.


Assuntos
Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Humanos , Masculino , Radioisótopos de Oxigênio
14.
Stroke ; 50(2): 373-380, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30636572

RESUMO

Background and Purpose- Noninvasive imaging of brain perfusion has the potential to elucidate pathophysiological mechanisms underlying Moyamoya disease and enable clinical imaging of cerebral blood flow (CBF) to select revascularization therapies for patients. We used hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) technology to characterize the distribution of hypoperfusion in Moyamoya disease and its relationship to vessel stenosis severity, through comparisons with a normative perfusion database of healthy controls. Methods- To image CBF, we acquired [15O]-water PET as a reference and simultaneously acquired arterial spin labeling (ASL) MRI scans in 20 Moyamoya patients and 15 age-matched, healthy controls on a PET/MRI scanner. The ASL MRI scans included a standard single-delay ASL scan with postlabel delay of 2.0 s and a multidelay scan with 5 postlabel delays (0.7-3.0s) to estimate and account for arterial transit time in CBF quantification. The percent volume of hypoperfusion in patients (determined as the fifth percentile of CBF values in the healthy control database) was the outcome measure in a logistic regression model that included stenosis grade and location. Results- Logistic regression showed that anterior ( P<0.0001) and middle cerebral artery territory regions ( P=0.003) in Moyamoya patients were susceptible to hypoperfusion, whereas posterior regions were not. Cortical regions supplied by arteries with stenosis on MR angiography showed more hypoperfusion than normal arteries ( P=0.001), but the extent of hypoperfusion was not different between mild-moderate versus severe stenosis. Multidelay ASL did not perform differently from [15O]-water PET in detecting perfusion abnormalities, but standard ASL overestimated the extent of hypoperfusion in patients ( P=0.003). Conclusions- This simultaneous PET/MRI study supports the use of multidelay ASL MRI in clinical evaluation of Moyamoya disease in settings where nuclear medicine imaging is not available and application of a normative perfusion database to automatically identify abnormal CBF in patients.


Assuntos
Bases de Dados Factuais , Imageamento por Ressonância Magnética , Artéria Cerebral Média , Doença de Moyamoya , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiopatologia , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Marcadores de Spin
15.
Eur J Nucl Med Mol Imaging ; 46(12): 2452-2463, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31385012

RESUMO

PURPOSE: The acute effect of loading on bone tissue and physiology can offer important information with regard to joint function in diseases such as osteoarthritis. Imaging studies using [18F]-sodium fluoride ([18F]NaF) have found changes in tracer kinetics in animals after subjecting bones to strain, indicating an acute physiological response. The aim of this study is to measure acute changes in NaF uptake in human bone due to exercise-induced loading. METHODS: Twelve healthy subjects underwent two consecutive 50-min [18F]NaF PET/MRI examinations of the knees, one baseline followed by one post-exercise scan. Quantification of tracer kinetics was performed using an image-derived input function from the popliteal artery. For both scans, kinetic parameters of KiNLR, K1, k2, k3, and blood volume were mapped parametrically using nonlinear regression with the Hawkins model. The kinetic parameters along with mean SUV and SUVmax were compared between the pre- and post-exercise examinations. Differences in response to exercise were analysed between bone tissue types (subchondral, cortical, and trabecular bone) and between regional subsections of knee subchondral bone. RESULTS: Exercise induced a significant (p < <0.001) increase in [18F]NaF uptake in all bone tissues in both knees, with mean SUV increases ranging from 47% in trabecular bone tissue to 131% in subchondral bone tissue. Kinetic parameters involving vascularization (K1 and blood volume) increased, whereas the NaF extraction fraction [k3/(k2 + k3)] was reduced. CONCLUSIONS: Bone loading induces an acute response in bone physiology as quantified by [18F]NaF PET kinetics. Dynamic imaging after bone loading using [18F]NaF PET is a promising diagnostic tool in bone physiology and imaging of biomechanics.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Radioisótopos de Flúor , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Fluoreto de Sódio , Adulto , Feminino , Voluntários Saudáveis , Humanos , Joelho/diagnóstico por imagem , Joelho/fisiologia , Masculino , Suporte de Carga
16.
Genet Med ; 20(5): 554-558, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29261187

RESUMO

PurposeThe clinical utility of screening unselected individuals for pathogenic BRCA1/2 variants has not been established. Data on cancer risk management behaviors and diagnoses of BRCA1/2-associated cancers can help inform assessments of clinical utility.MethodsWhole-exome sequences of participants in the MyCode Community Health Initiative were reviewed for pathogenic/likely pathogenic BRCA1/2 variants. Clinically confirmed variants were disclosed to patient-participants and their clinicians. We queried patient-participants' electronic health records for BRCA1/2-associated cancer diagnoses and risk management that occurred within 12 months after results disclosure, and calculated the percentage of patient-participants of eligible age who had begun risk management.ResultsThirty-seven MyCode patient-participants were unaware of their pathogenic/likely pathogenic BRCA1/2 variant, had not had a BRCA1/2-associated cancer, and had 12 months of follow-up. Of the 33 who were of an age to begin BRCA1/2-associated risk management, 26 (79%) had performed at least one such procedure. Three were diagnosed with an early-stage, BRCA1/2-associated cancer-including a stage 1C fallopian tube cancer-via these procedures.ConclusionScreening for pathogenic BRCA1/2 variants among unselected individuals can lead to occult cancer detection shortly after disclosure. Comprehensive outcomes data generated within our learning healthcare system will aid in determining whether population-wide BRCA1/2 genomic screening programs offer clinical utility.


Assuntos
Bancos de Espécimes Biológicos , Detecção Precoce de Câncer/métodos , Genes BRCA1 , Genes BRCA2 , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Humanos , Pessoa de Meia-Idade , Linhagem , Sequenciamento Completo do Genoma
17.
J Magn Reson Imaging ; 47(4): 1119-1132, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28792653

RESUMO

PURPOSE: To compare performance of sequential and Hadamard-encoded pseudocontinuous arterial spin labeling (PCASL). MATERIALS AND METHODS: Monte Carlo simulations and in vivo experiments were performed in 10 healthy subjects. Field strength and sequence: 5-delay sequential (5-del. Seq.), 7-delay Hadamard-encoded (7-del. Had.), and a single-delay (1-del.) PCASL, without and with vascular crushing at 3.0T. The errors and variations of cerebral blood flow (CBF) and arterial transit time (ATT) from simulations and the CBF and ATT estimates and variations in gray matter (GM) with different ATT ranges were compared. Pairwise t-tests with Bonferroni correction were used. RESULTS: The simulations and in vivo experiments showed that 1-del. PCASL underestimated GM CBF due to insufficient postlabeling delay (PLD) (37.2 ± 8.1 vs. 47.3 ± 8.5 and 47.3 ± 9.0 ml/100g/min, P ≤ 6.5 × 10-6 ), while 5-del. Seq. and 7-del. Had. yielded comparable GM CBF (P ≥ 0.49). 5-del. Seq. was more reproducible for CBF (P = 4.7 × 10-4 ), while 7-del. Had. was more reproducible for ATT (P = 0.033). 5-del. Seq. was more prone to intravascular artifacts and yielded lower GM ATTs compared to 7-del. Had. without crushing (1.13 ± 0.18 vs. 1.23 ± 0.13 seconds, P = 2.3 × 10-3 ), but they gave comparable ATTs with crushing (P = 0.12). ATTs measured with crushing were longer than those without crushing (P ≤ 6.7 × 10-4 ), but CBF was not affected (P ≥ 0.16). CONCLUSION: The theoretical signal-to-noise ratio (SNR) gain through Hadamard encoding was confirmed experimentally. For 1-del., a PLD of 1.8 seconds is recommended for healthy subjects. With current parameters, 5-del. Seq. was more reproducible for CBF, and 7-del. Had. for ATT. Vascular crushing may help reduce variations in multidelay experiments without compromising tissue CBF or ATT measurements. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1119-1132.


Assuntos
Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
18.
J Genet Couns ; 27(2): 358-369, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29204811

RESUMO

"The objective of this study was to" test the effectiveness of an enhanced genomic report on patient-centered outcome domains including communication, engagement and satisfaction. "Study design utilized" a prospective, randomized, mixed-methods desctiptive study of a whole genome sequencing results report, GenomeCOMPASS™, that was accessed by providers through the electronic health record and by patients through the associated patient portal. "The study was set in" an integrated healthcare delivery system in central Pennsylvania. "Eighty-four" parents of 46 children with undiagnosed Intellectual Disability, Autism Spectrum Disorder and/or multiple congenital anomalies who had participated in a previous study offering whole genome sequencing for their affected child were invited to enroll. Fifty-two parents enrolled. Following a traditional genetics results informing visit, the study coordinator stratified families by diagnostic result and uninformative result and then randomized families within each group to an intervention arm to receive the GenomeCOMPASS™ report or to the usual care arm to receive a summary letter from the medical geneticist. A letter inviting enrollment included a baseline survey, which once returned, constituted enrollment. Surveys were administered at 3 months post-genetics visit. At 6 months, the usual care arm crossed over to receive the intervention and were administered an additional survey at 3 months. Qualitative interviews were conducted following survey completion to augment the survey data regarding the patient centered outcomes of interest. Patient reported outcomes including communication, engagement, empowerment and satisfaction. In the intervention arm, GenomeCOMPASS™ reports were released to 14 families (N = 28 parents) and of those 21 (75%) returned 3 month surveys. In the usual care arm, 12 families (N = 24 parents) received usual care summary letters and of those 20 (83%) returned 3 month surveys. At crossover, GenomeCOMPASS™ reports were released to 20 individuals and 15 (75%) returned 3 month surveys. Qualitative interviews were conducted with 5 individuals. Use of the GenomeCOMPASS™ report was reported by this small group of parents to improve communication with providers and non-health professionals such as educators and therapists and led to increased engagement and high satisfaction. Providers and others involved in the children's care also endorsed the report's effectiveness. Reports that addressed negative findings, i.e. uninformative results, were not found to be useful. Although the number of users was small, this study supports that customizable template reports may provide a useful and durable source of information that can support and enhance the information provided by genetics professionals in traditional face-to-face encounters. TRIAL REGISTRATION: Clinicaltrials.gov (Record 2013-0594).


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Comunicação , Testes Genéticos , Genômica , Satisfação do Paciente , Criança , Pré-Escolar , Registros Eletrônicos de Saúde , Feminino , Humanos , Masculino , Pais , Assistência Centrada no Paciente , Estudos Prospectivos , Inquéritos e Questionários
19.
Stroke ; 48(9): 2441-2449, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28765286

RESUMO

BACKGROUND AND PURPOSE: Arterial spin labeling (ASL) MRI is a promising, noninvasive technique to image cerebral blood flow (CBF) but is difficult to use in cerebrovascular patients with abnormal, long arterial transit times through collateral pathways. To be clinically adopted, ASL must first be optimized and validated against a reference standard in these challenging patient cases. METHODS: We compared standard-delay ASL (post-label delay=2.025 seconds), multidelay ASL (post-label delay=0.7-3.0 seconds), and long-label long-delay ASL acquisitions (post-label delay=4.0 seconds) against simultaneous [15O]-positron emission tomography (PET) CBF maps in 15 Moyamoya patients on a hybrid PET/MRI scanner. Dynamic susceptibility contrast was performed in each patient to identify areas of mild, moderate, and severe time-to-maximum (Tmax) delays. Relative CBF measurements by each ASL scan in 20 cortical regions were compared with the PET reference standard, and correlations were calculated for areas with moderate and severe Tmax delays. RESULTS: Standard-delay ASL underestimated relative CBF by 20% in areas of severe Tmax delays, particularly in anterior and middle territories commonly affected by Moyamoya disease (P<0.001). Arterial transit times correction by multidelay acquisitions led to improved consistency with PET, but still underestimated CBF in the presence of long transit delays (P=0.02). Long-label long-delay ASL scans showed the strongest correlation relative to PET, and there was no difference in mean relative CBF between the modalities, even in areas of severe delays. CONCLUSIONS: Post-label delay times of ≥4 seconds are needed and may be combined with multidelay strategies for robust ASL assessment of CBF in Moyamoya disease.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Doença de Moyamoya/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Circulação Colateral , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Marcadores de Spin
20.
Magn Reson Med ; 77(4): 1713-1727, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27059521

RESUMO

PURPOSE: Susceptibility-based blood oxygenation measurements in small vessels of the brain derive from gradient echo (GRE) phase and can provide localized assessment of brain function and pathology. However, when vessel diameter becomes smaller than the acquisition voxel size, partial volume effects compromise these measurements. The purpose of this study was to develop a technique to improve the reliability of vessel oxygenation estimates in the presence of partial volume effects. METHODS: Intravoxel susceptibility variations are present when a vessel and parenchyma experience partial volume effects, modifying the voxel's GRE phase signal and attenuating the GRE magnitude signal. Using joint utilization of magnitude and phase (JUMP), both vessel susceptibility and voxel partial volume fraction can be estimated, providing measurements of venous oxygen saturation ( Yv) in straight, nearly vertical vessels that have improved robustness to partial volume effects. RESULTS: JUMP was demonstrated by estimating vessel Yv in numerical and in vivo experiments. Deviations from ground truth of Yv measurements in vessels tilted up to 30° from B0 were reduced by over 50% when using JUMP compared with phase-only techniques. CONCLUSION: JUMP exploits both magnitude and phase data in GRE imaging to mitigate partial volume effects in estimation of vessel oxygenation. Magn Reson Med 77:1713-1727, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Oximetria/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Masculino , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA