Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Cell Physiol ; 236(8): 5966-5979, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33438203

RESUMO

Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.


Assuntos
Quimiocina CXCL12/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Dexametasona/farmacologia , Metotrexato/farmacologia , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Camundongos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos
2.
J Cell Physiol ; 236(5): 3740-3751, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33078406

RESUMO

Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the ß-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without ß-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of ß-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+  hematopoietic progenitor cell contents. Thus, ß-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Hematopoese , Metotrexato/uso terapêutico , Osteogênese , Transdução de Sinais , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Medula Óssea/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Metotrexato/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoprotegerina/metabolismo , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Ligante RANK/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
J Cell Physiol ; 234(9): 16549-16561, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30784063

RESUMO

Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.

4.
J Cell Physiol ; 234(7): 11276-11286, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565680

RESUMO

Cancer chemotherapy can cause significant damage to the bone marrow (BM) microvascular (sinusoidal) system. Investigations must now address whether and how BM sinusoidal endothelial cells (SECs) can be protected during chemotherapy. Herein we examined the potential protective effects of genistein, a soy-derived flavonoid, against BM sinusoidal damage caused by treatment with methotrexate (MTX). The groups of young adult rats were gavaged daily with genistein (20 mg/kg) or placebo. After 1 week, rats also received daily injections of MTX (0.75 mg/kg) or saline for 5 days and were killed after a further 4 days. Histological analyses showed that BM sinusoids were markedly dilated ( p < 0.001) in the MTX-alone group but were unaffected or less dilated in the genistein+MTX group. In control rats, genistein significantly enhanced expression of vascular endothelial growth factor (VEGF; p < 0.01), particularly in osteoblasts, and angiogenesis marker CD31 ( p < 0.001) in bone. In MTX-treated rats, genistein suppressed MTX-induced apoptosis of BM SECs ( p < 0.001 vs MTX alone group) and tended to increase expression of CD31 and VEGF ( p < 0.05). Our in vitro studies showed that genistein in certain concentrations protected cultured SECs from MTX cytotoxic effects. Genistein enhanced tube formation of cultured SECs, which is associated with its ability to induce expression of endothelial nitric oxide synthase and production of nitric oxide. These data suggest that genistein can protect BM sinusoids during MTX therapy, which is associated, at least partially, with its indirect effect of promoting VEGF expression in osteoblasts and its direct effect of enhancing nitric oxide production in SECs.


Assuntos
Anticarcinógenos/farmacologia , Antimetabólitos Antineoplásicos/efeitos adversos , Medula Óssea/irrigação sanguínea , Genisteína/farmacologia , Metotrexato/efeitos adversos , Animais , Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Osteoblastos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/biossíntese
5.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415482

RESUMO

Although bone marrow and bone toxicities have been reported in breast cancer survivors, preventative strategies are yet to be developed. Clinical studies suggest consumption of long chain omega-3 polyunsaturated fatty acids (LCn3PUFA) can attenuate age-related bone loss, and recent animal studies also revealed benefits of LCn3PUFA in alleviating bone marrow and bone toxicities associated with methotrexate chemotherapy. Using a female rat model for one of the most commonly used anthracycline-containing breast cancer chemotherapy regimens (adriamycin + cyclophosphamide) (AC) chemotherapy, this study investigated potential effects of daily LCn3PUFA consumption in preserving bone marrow and bone microenvironment during chemotherapy. AC treatment for four cycles significantly reduced bone marrow cellularity and increased marrow adipocyte contents. It increased trabecular bone separation but no obvious changes in bone volume or bone cell densities. LCn3PUFA supplementation (375 mg/100 g/day) attenuated AC-induced bone marrow cell depletion and marrow adiposity. It also partially attenuated AC-induced increases in trabecular bone separation and the cell sizes and nuclear numbers of osteoclasts formed ex vivo from bone marrow cells isolated from AC-treated rats. This study suggests that LCn3PUFA supplementation may have beneficial effects in preventing bone marrow damage and partially protecting the bone during AC cancer chemotherapy.


Assuntos
Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Ciclofosfamida/efeitos adversos , Suplementos Nutricionais , Doxorrubicina/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Animais , Antineoplásicos/efeitos adversos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Microambiente Celular/efeitos dos fármacos , Feminino , Osteoclastos/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Fatores Sexuais , Microtomografia por Raio-X
6.
Breast Cancer Res Treat ; 165(1): 41-51, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28550626

RESUMO

PURPOSE: Anthracyclines (including doxorubicin) are still the backbone of commonly used breast cancer chemotherapy regimens. Despite increasing use of doxorubicin and cyclophosphamide (AC) combinations for treating breast cancer, their potential to cause adverse skeletal effects remains unclear. METHODS: This study examined the effects of treatments with the AC regimen on bone and bone marrow in adult female rats. RESULTS: AC treatment for four cycles (weekly intravenous injection of 2 mg/kg doxorubicin and 20 mg/kg cyclophosphamide) resulted in a reduced volume of trabecular bone at the metaphysis, which was associated with reduced serum levels of 25-hydroxy vitamin D3 and alkaline phosphatase. Reductions in densities of osteocytes and bone lining cells were also observed. In addition, bone marrow was severely damaged, including a severe reduction in bone marrow cellularity and an increase in marrow adipocyte content. Accompanying these changes, there were increases in mRNA expression of adipogenesis regulatory genes (PPARγ and FABP4) and an inflammatory cytokine (TNFα) in metaphysis bone and bone marrow. CONCLUSIONS: This study indicates that AC chemotherapy may induce some bone loss, due to reduced bone formation, and bone marrow damage, due to increased marrow adiposity. Preventive strategies for preserving the bone and bone marrow microenvironment during anthracycline chemotherapy warrant further investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Medula Óssea/efeitos dos fármacos , Ciclofosfamida/toxicidade , Doxorrubicina/toxicidade , Fêmur/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Fosfatase Alcalina/sangue , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Medula Óssea/metabolismo , Medula Óssea/patologia , Calcifediol/sangue , Células Cultivadas , Microambiente Celular , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Esquema de Medicação , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Fêmur/metabolismo , Fêmur/patologia , Injeções Intravenosas , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteócitos/patologia , PPAR gama/genética , PPAR gama/metabolismo , Ratos Sprague-Dawley , Tíbia/metabolismo , Tíbia/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Biotechnol Bioeng ; 114(1): 217-231, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477393

RESUMO

Mimicking the zonal organization of native articular cartilage, which is essential for proper tissue functions, has remained a challenge. In this study, a thermoresponsive copolymer of chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesized as a carrier of mesenchymal stem cells (MSCs) to provide a support for their proliferation and differentiation. Microengineered three-dimensional (3D) cell-laden CS-g-PNIPAAm hydrogels with different microstripe widths were fabricated to control cellular alignment and elongation in order to mimic the superficial zone of natural cartilage. Biochemical assays showed six- and sevenfold increment in secretion of glycosaminoglycans (GAGs) and total collagen from MSCs encapsulated within the synthesized hydrogel after 28 days incubation in chondrogenic medium. Chondrogenic differentiation was also verified qualitatively by histological and immunohistochemical assessments. It was found that 75 ± 6% of cells encapsulated within 50 µm wide microstripes were aligned with an aspect ratio of 2.07 ± 0.16 at day 5, which was more organized than those observed in unpatterned constructs (12 ± 7% alignment and a shape index of 1.20 ± 0.07). The microengineered constructs mimicked the cell shape and organization in the superficial zone of cartilage whiles the unpatterned one resembled the middle zone. Our results suggest that microfabrication of 3D cell-laden thermosensitive hydrogels is a promising platform for creating biomimetic structures leading to more successful multi-zonal cartilage tissue engineering. Biotechnol. Bioeng. 2017;114: 217-231. © 2016 Wiley Periodicals, Inc.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Hidrogéis/química , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Animais , Diferenciação Celular , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/química , Células-Tronco Mesenquimais/citologia , Camundongos , Microtecnologia , Propriedades de Superfície , Temperatura
9.
J Bone Miner Metab ; 34(3): 277-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26056019

RESUMO

The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation.


Assuntos
Adiposidade/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Osteoclastos/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medula Óssea/patologia , Células da Medula Óssea/patologia , Ciclofosfamida/efeitos adversos , Ciclofosfamida/farmacologia , Epirubicina/efeitos adversos , Epirubicina/farmacologia , Feminino , Fluoruracila/efeitos adversos , Fluoruracila/farmacologia , Osteoclastos/patologia , Ratos , Ratos Sprague-Dawley
10.
J Cell Physiol ; 230(3): 648-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25187349

RESUMO

Antimetabolite Methotrexate (MTX) is commonly used in childhood oncology. As a dihydrofolate reductase inhibitor it exerts its action through the reduction of cellular folate, thus its intensive use is associated with damage to soft tissues, bone marrow, and bone. In the clinic, MTX is administered with folinic acid (FA) supplementation to alleviate some of this soft tissue damage. However, whether and how FA alleviates damage to the bone and bone marrow requires further investigation. As the Wnt/ß-catenin signalling pathway is critical for commitment and differentiation of mesenchymal stem cells down the osteogenic or adipogenic lineage, its deregulation has been found associated with increased marrow adiposity following MTX treatment. In order to elucidate whether FA supplementation prevents MTX-induced bone marrow adiposity by regulating Wnt/ß-catenin signalling, young rats were given saline or 0.75 mg/kg MTX once daily for 5 days, receiving saline or 0.75 mg/kg FA 6 h after MTX. FA rescue alleviated the MTX-induced bone marrow adiposity, as well as inducing up-regulation of Wnt10b mRNA and ß-catenin protein expression in the bone. Furthermore, FA blocked up-regulation of the secreted Wnt antagonist sFRP-1 mRNA expression. Moreover, secreted sFRP-1 protein in the bone marrow and its expression by osteoblasts and adipocytes was found increased following MTX treatment. This potentially indicates that sFRP-1 is a major regulator of defective Wnt/ß-catenin signalling following MTX treatment. This study provides evidence that folate depletion caused by MTX chemotherapy results in increased bone marrow adiposity, and that FA rescue alleviates these defects by up-regulating Wnt/ß-catenin signalling in the bone.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Leucovorina/administração & dosagem , Metotrexato/administração & dosagem , Proteínas Wnt/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metotrexato/efeitos adversos , Ratos , Via de Sinalização Wnt/efeitos dos fármacos
11.
J Cell Physiol ; 227(3): 909-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21503894

RESUMO

Intensive use of cancer chemotherapy is increasingly linked with long-term skeletal side effects such as osteopenia, osteoporosis and fractures. However, cellular mechanisms by which chemotherapy affects bone integrity remain unclear. Methotrexate (MTX), used commonly as an anti-metabolite, is known to cause bone defects. To study the pathophysiology of MTX-induced bone loss, we examined effects on bone and marrow fat volume, population size and differentiation potential of bone marrow stromal cells (BMSC) in adult rats following chemotherapy for a short-term (five once-daily doses at 0.75 mg/kg) or a 6-week term (5 doses at 0.65 mg/kg + 9 days rest + 1.3 mg/kg twice weekly for 4 weeks). Histological analyses revealed that both acute and chronic MTX treatments caused a significant decrease in metaphyseal trabecular bone volume and an increase in marrow adipose mass. In the acute model, proliferation of BMSCs significantly decreased on days 3-9, and consistently the stromal progenitor cell population as assessed by CFU-F formation was significantly reduced on day 9. Ex vivo differentiation assays showed that while the osteogenic potential of isolated BMSCs was significantly reduced, their adipogenic capacity was markedly increased on day 9. Consistently, RT-PCR gene expression analyses showed osteogenic transcription factors Runx2 and Osterix (Osx) to be decreased but adipogenic genes PPARγ and FABP4 up-regulated on days 6 and 9 in the stromal population. These findings indicate that MTX chemotherapy reduces the bone marrow stromal progenitor cell population and induces a switch in differentiation potential towards adipogenesis at the expense of osteogenesis, resulting in osteopenia and marrow adiposity.


Assuntos
Adipogenia/efeitos dos fármacos , Antimetabólitos Antineoplásicos/toxicidade , Doenças Ósseas Metabólicas/induzido quimicamente , Células da Medula Óssea/efeitos dos fármacos , Metotrexato/toxicidade , Osteogênese/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
12.
J Biomed Biotechnol ; 2011: 903097, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21541196

RESUMO

The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX), the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Desenvolvimento Ósseo/efeitos dos fármacos , Doenças Ósseas/induzido quimicamente , Modelos Animais de Doenças , Metotrexato/toxicidade , Neoplasias/tratamento farmacológico , Animais , Criança , Humanos , Ratos
13.
J Bone Miner Res ; 34(2): 310-326, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30395366

RESUMO

Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.


Assuntos
Apoptose/efeitos dos fármacos , Osso Esponjoso , Quimiocina CXCL12/metabolismo , Dexametasona/efeitos adversos , Lâmina de Crescimento , Músculo Esquelético/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Osso Esponjoso/crescimento & desenvolvimento , Osso Esponjoso/patologia , Linhagem Celular , Quimiocina CXCL12/antagonistas & inibidores , Dexametasona/farmacologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/patologia , Masculino , Camundongos , Músculo Esquelético/patologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
14.
J Cell Physiol ; 214(3): 777-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17786974

RESUMO

Chemotherapy often induces bone growth defects in pediatric cancer patients; yet the underlying cellular mechanisms remain unclear and currently no preventative treatments are available. Using an acute chemotherapy model in young rats with the commonly used antimetabolite methotrexate (MTX), this study investigated damaging effects of five once-daily MTX injections and potential protective effects of supplementary treatment with antidote folinic acid (FA) on cellular activities in the tibial growth plate, metaphysis, and bone marrow. MTX suppressed proliferation and induced apoptosis of chondrocytes, and reduced collagen-II expression and growth plate thickness. It reduced production of primary spongiosa bone, volume of secondary spongiosa bone, and proliferation of metaphyseal osteoblasts, preosteoblasts and bone marrow stromal cells, with the cellular activities being most severely damaged on day 9 and returning to or towards near normal levels by day 14. On the other hand, proliferation of marrow pericytes was increased early after MTX treatment and during repair. FA supplementation significantly suppressed chondrocyte apoptosis, preserved chondrocyte proliferation and expression of collagen-II, and attenuated damaging effects on production of calcified cartilage and primary bone. The supplementation also significantly reduced MTX effects on proliferation of metaphyseal osteoblastic cells and of bone marrow stromal cells, and enhanced pericyte proliferation. These observations suggest that FA supplementation effectively attenuates MTX damage on cellular activities in producing calcified cartilage and primary trabecular bone and on pools of osteoblastic cells and marrow stromal cells, and that it enhances proliferation of mesenchymal progenitor cells during bone/bone marrow recovery.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Leucovorina/farmacologia , Metotrexato/efeitos adversos , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Pericitos/citologia , Pericitos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
Bone ; 116: 232-247, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125729

RESUMO

Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin­3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).


Assuntos
Cartilagem Articular/patologia , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Neurotrofina 3/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor trkC/metabolismo
16.
Bone ; 41(5): 842-50, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17884747

RESUMO

Methotrexate (MTX) is a commonly used anti-metabolite in childhood oncology and is known to cause bone growth arrest and osteoporosis; yet the underlying mechanisms for MTX-induced bone growth defects remain largely unclear. This study characterized damaging effects in young rats of acute chemotherapy with 5 once-daily doses of MTX (0.75 mg/kg) on the cellular activities in the growth plate in producing calcified cartilage and trabecular bone and on activities of osteoblastic cells in the metaphysis. MTX treatment significantly induced chondrocyte apoptosis. MTX also suppressed chondrocyte proliferation and reduced collagen-II mRNA expression and total thickness of the growth plate, with the damage being most obvious on day 9 after the first injection, and with the growth plate histological structure returning normal on day 14. In the adjacent metaphyseal bone, mirroring the decrease in the width of the growth plate, production of primary spongiosa bone was markedly reduced and bone volume of the secondary spongiosa was decreased. Furthermore, MTX treatment significantly induced osteocyte apoptosis in the primary spongiosa and reduced proliferation of osteoblasts and preosteoblasts particularly in the secondary spongiosa. These observations suggest that methotrexate chemotherapy may cause bone growth defects by arresting cellular activities in the growth plate in producing calcified cartilage and primary trabecular bone and by decreasing pools of metaphyseal osteoblastic cells. However, this short-term MTX treatment only caused transit suppressions on growth plate cartilage and trabecular bone, as most cellular and histological parameters had recovered by day 14 or 21.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Desenvolvimento Ósseo/efeitos dos fármacos , Metotrexato/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
17.
Sci Rep ; 7: 42438, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195224

RESUMO

This study demonstrates that the hydrogen storage rate (HSR) of nanoporous carbon supported platinum nanocatalysts (NC) is determined by their heterojunction and geometric configurations. The present NC is synthesized in an average particle size of ~1.5 nm by incipient wetness impregnation of Pt4+ at carbon support followed by annealing in H2 ambient at 102-105 °C. Among the steps in hydrogen storage, decomposition of H2 molecule into 2 H atoms on Pt NC surface is the deciding factor in HSR that is controlled by the thickness of Pt NC. For the best condition, HSR of Pt NC in 1~2 atomic layers thick (4.7 µg/g min) is 2.6 times faster than that (1.3 µg/g min) of Pt NC with higher than 3 atomic layers thick.

19.
J Chemother ; 26(1): 37-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24090452

RESUMO

Metallothioneins (MTs) are known to participate in protection against oxidative stress. This study assessed the effects of MT-I&II gene knockout on methotrexate (MTX)-induced bone damage in growing mice. MT-I&II knockout (MT⁻/⁻) and wild type (MT⁺/⁺) male mice were injected with saline or 12.5 mg kg⁻¹ MTX for three consecutive days. MTX treatment was shown to cause more severe damage in MT⁻/⁻ mice when compared to MT⁺/⁺ mice, as demonstrated by the more obvious thinning of growth plate, reduced proliferation and increased apoptosis of chondrocytes, and reduced metaphysis heights in the knockout mice. Analysis of total liver glutathione (the most abundant intracellular antioxidant) also revealed significant lower glutathione levels in all MT⁻/⁻ mice. In conclusion, MT⁻/⁻ mice were more susceptible than MT⁺/⁺ mice to MTX-induced bone damages, which may be associated with the reduction of basal antioxidant defence, suggesting a protective role of MTs in the growing skeleton against damages caused by MTX chemotherapy.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Desenvolvimento Ósseo/fisiologia , Condrócitos/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Metalotioneína/fisiologia , Metotrexato/uso terapêutico , Doença Aguda , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Orthop Res ; 32(4): 587-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24346859

RESUMO

Methotrexate (MTX) chemotherapy is known to cause bone loss which lacks specific preventative treatments, although clinically folinic acid is often used to reduce MTX toxicity in soft tissues. This study investigated damaging effects of MTX injections (0.75 mg/kg/day for 5 days) in rats and potential protective benefits of fish oil (0.25, 0.5, or 0.75 ml/100 g/day) in comparison to folinic acid (0.75 mg/kg) in the tibial metaphysis. MTX treatment significantly reduced height of primary spongiosa and volume of trabecular bone while reducing density of osteoblasts. Consistently, MTX reduced osteogenic differentiation but increased adipogenesis of bone marrow stromal cells, accompanied by lower mRNA expression of osteogenic transcription factors Runx2 and Osx, but an up-regulation of adipogenesis-related genes FABP4 and PPAR-γ. MTX also increased osteoclast density, bone marrow osteoclast formation, and mRNA expression of proinflammatory cytokines IL-1, IL-6, TNF-α, and RANKL/OPG ratio in bone. Fish oil (0.5 or 0.75 ml/100 g) or folinic acid supplementation preserved bone volume, osteoblast density, and osteogenic differentiation, and suppressed MTX-induced cytokine expression, osteoclastogenesis, and adipogenesis. Thus, fish oil at 0.5 ml/100 g or above is as effective as folinic acid in counteracting MTX-induced bone damage, conserving bone formation, suppressing resorption and marrow adiposity, suggesting its therapeutic potential in preventing bone loss during MTX chemotherapy.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Doenças Ósseas/prevenção & controle , Óleos de Peixe/administração & dosagem , Leucovorina/uso terapêutico , Metotrexato/efeitos adversos , Complexo Vitamínico B/uso terapêutico , Animais , Doenças Ósseas/induzido quimicamente , Osso e Ossos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Leucovorina/farmacologia , Masculino , Osteoblastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Complexo Vitamínico B/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA