Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 21(3): 1069-1079, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31161204

RESUMO

Post-translational modifications (PTMs) play very important roles in various cell signaling pathways and biological process. Due to PTMs' extremely important roles, many major PTMs have been studied, while the functional and mechanical characterization of major PTMs is well documented in several databases. However, most currently available databases mainly focus on protein sequences, while the real 3D structures of PTMs have been largely ignored. Therefore, studies of PTMs 3D structural signatures have been severely limited by the deficiency of the data. Here, we develop PRISMOID, a novel publicly available and free 3D structure database for a wide range of PTMs. PRISMOID represents an up-to-date and interactive online knowledge base with specific focus on 3D structural contexts of PTMs sites and mutations that occur on PTMs and in the close proximity of PTM sites with functional impact. The first version of PRISMOID encompasses 17 145 non-redundant modification sites on 3919 related protein 3D structure entries pertaining to 37 different types of PTMs. Our entry web page is organized in a comprehensive manner, including detailed PTM annotation on the 3D structure and biological information in terms of mutations affecting PTMs, secondary structure features and per-residue solvent accessibility features of PTM sites, domain context, predicted natively disordered regions and sequence alignments. In addition, high-definition JavaScript packages are employed to enhance information visualization in PRISMOID. PRISMOID equips a variety of interactive and customizable search options and data browsing functions; these capabilities allow users to access data via keyword, ID and advanced options combination search in an efficient and user-friendly way. A download page is also provided to enable users to download the SQL file, computational structural features and PTM sites' data. We anticipate PRISMOID will swiftly become an invaluable online resource, assisting both biologists and bioinformaticians to conduct experiments and develop applications supporting discovery efforts in the sequence-structural-functional relationship of PTMs and providing important insight into mutations and PTM sites interaction mechanisms. The PRISMOID database is freely accessible at http://prismoid.erc.monash.edu/. The database and web interface are implemented in MySQL, JSP, JavaScript and HTML with all major browsers supported.


Assuntos
Bases de Dados de Proteínas , Mutação , Processamento de Proteína Pós-Traducional , Proteínas/química , Conformação Proteica
2.
Bioinformatics ; 35(17): 2957-2965, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649179

RESUMO

MOTIVATION: Promoters are short DNA consensus sequences that are localized proximal to the transcription start sites of genes, allowing transcription initiation of particular genes. However, the precise prediction of promoters remains a challenging task because individual promoters often differ from the consensus at one or more positions. RESULTS: In this study, we present a new multi-layer computational approach, called MULTiPly, for recognizing promoters and their specific types. MULTiPly took into account the sequences themselves, including both local information such as k-tuple nucleotide composition, dinucleotide-based auto covariance and global information of the entire samples based on bi-profile Bayes and k-nearest neighbour feature encodings. Specifically, the F-score feature selection method was applied to identify the best unique type of feature prediction results, in combination with other types of features that were subsequently added to further improve the prediction performance of MULTiPly. Benchmarking experiments on the benchmark dataset and comparisons with five state-of-the-art tools show that MULTiPly can achieve a better prediction performance on 5-fold cross-validation and jackknife tests. Moreover, the superiority of MULTiPly was also validated on a newly constructed independent test dataset. MULTiPly is expected to be used as a useful tool that will facilitate the discovery of both general and specific types of promoters in the post-genomic era. AVAILABILITY AND IMPLEMENTATION: The MULTiPly webserver and curated datasets are freely available at http://flagshipnt.erc.monash.edu/MULTiPly/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Regiões Promotoras Genéticas , Software , Teorema de Bayes , Sítio de Iniciação de Transcrição
3.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1937-1945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31804942

RESUMO

Lysine formylation is a reversible type of protein post-translational modification and has been found to be involved in a myriad of biological processes, including modulation of chromatin conformation and gene expression in histones and other nuclear proteins. Accurate identification of lysine formylation sites is essential for elucidating the underlying molecular mechanisms of formylation. Traditional experimental methods are time-consuming and expensive. As such, it is desirable and necessary to develop computational methods for accurate prediction of formylation sites. In this study, we propose a novel predictor, termed Formator, for identifying lysine formylation sites from sequences information. Formator is developed using the ensemble learning (EL) strategy based on four individual support vector machine classifiers via a voting system. Moreover, the most distant undersampling and Safe-Level-SMOTE oversampling techniques were integrated to deal with the data imbalance problem of the training dataset. Four effective feature extraction methods, namely bi-profile Bayes (BPB), k-nearest neighbor (KNN), amino acid physicochemical properties (AAindex), and composition and transition (CTD) were employed to encode the surrounding sequence features of potential formylation sites. Extensive empirical studies show that Formator achieved the accuracy of 87.24 and 74.96 percent on jackknife test and the independent test, respectively. Performance comparison results on the independent test indicate that Formator outperforms current existing prediction tool, LFPred, suggesting that it has a great potential to serve as a useful tool in identifying novel lysine formylation sites and facilitating hypothesis-driven experimental efforts.


Assuntos
Histonas , Lisina , Processamento de Proteína Pós-Traducional/genética , Análise de Sequência de Proteína/métodos , Algoritmos , Teorema de Bayes , Biologia Computacional , Histonas/química , Histonas/genética , Histonas/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA