Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nature ; 610(7931): 296-301, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224420

RESUMO

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.

2.
Nat Mater ; 23(3): 383-390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062169

RESUMO

Transparent conducting oxides are a critical component in modern (opto)electronic devices and solar energy conversion systems, and forming textured functional films on them is highly desirable for property manipulation and performance optimization. However, technologically important materials show varied crystal structures, making it difficult to establish coherent interfaces and consequently the oriented growth of these materials on transparent conducting oxides. Here, taking lattice-mismatched hexagonal α-Fe2O3 and tetragonal fluorine-doped tin oxide as the example, atomic-level investigations reveal that a coherent ordered structure forms at their interface, and via an oxygen-mediated dimensional and chemical-matching manner, that is, matched Voronoi cells of oxygen sublattices, [110]-oriented α-Fe2O3 films develop on fluorine-doped tin oxide. Further measurements of charge transport characteristics and photoelectronic effects highlight the importance and advantages of coherent interfaces and well-defined orientation in textured α-Fe2O3 films. Textured growth of lattice-mismatched oxides, including spinel Co3O4, fluorite CeO2, perovskite BiFeO3 and even halide perovskite Cs2AgBiBr6, on fluorine-doped tin oxide is also achieved, offering new opportunities to develop high-performance transparent-conducting-oxide-supported devices.

3.
Nano Lett ; 23(8): 3540-3548, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026801

RESUMO

Surface plasmon resonance-induced charge separation plays key roles in plasmon-related applications, especially in photocatalysis and photovoltaics. Plasmon coupling nanostructures exhibit extraordinary behaviors in hybrid states, phonon scattering, and ultrafast plasmon dephasing, but plasmon-induced charge separation in these materials remains unknown. Here, we design Schottky-free Au nanoparticle (NP)/NiO/Au nanoparticles-on-a-mirror plasmonic photocatalysts to support plasmon-induced interfacial hole transfer, evidenced by surface photovoltage microscopy at the single-particle level. In particular, we observe a nonlinear increase in charge density and photocatalytic performance with an increase in excitation intensity in plasmonic photocatalysts containing hot spots as a result of varying the geometry. Such charge separation increased the internal quantum efficiency by 14 times at 600 nm in catalytic reactions as compared to that of the Au NP/NiO without a coupling effect. These observations provide an improved understanding of charge transfer management and utilization by geometric engineering and interface electronic structure for plasmonic photocatalysis.

4.
Angew Chem Int Ed Engl ; 63(28): e202403607, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38659136

RESUMO

Alkaline zinc-ferricyanide flow batteries are efficiency and economical as energy storage solutions. However, they suffer from low energy density and short calendar life. The strongly alkaline conditions (3 mol L-1 OH-) reduce the solubility of ferri/ferro-cyanide (normally only 0.4 mol L-1 at 25 °C) and induce the formation of zinc dendrites at the anode. Here, we report a new zinc-ferricyanide flow battery based on a mild alkalescent (pH 12) electrolyte. Using a chelating agent to rearrange ferri/ferro-cyanide ion-solvent interactions and improve salt dissociation, we increased the solubility of ferri/ferro-cyanide to 1.7 mol L-1 and prevented zinc dendrites. Our battery has an energy density of ~74 Wh L-1 catholyte at 60 °C and remains stable for 1800 cycles (1800 hours) at 0 °C and for >1400 cycles (2300 hours) at 25 °C. An alkalescent zinc-ferricyanide cell stack built using this alkalescent electrolyte stably delivers 608 W of power for ~40 days.

5.
Angew Chem Int Ed Engl ; 63(17): e202401477, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38419469

RESUMO

Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the "NOT", "NAND", and "NOR" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.


Assuntos
Encéfalo , Nitritos , Elementos de Transição , Potenciais de Ação , Íons , Potenciais da Membrana
6.
J Am Chem Soc ; 145(8): 4667-4674, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795953

RESUMO

Charge transfer at the semiconductor/solution interface is fundamental to photoelectrocatalytic water splitting. Although insights into charge transfer in the electrocatalytic process can be gained from the phenomenological Butler-Volmer theory, there is limited understanding of interfacial charge transfer in the photoelectrocatalytic process, which involves intricate effects of light, bias, and catalysis. Here, using operando surface potential measurements, we decouple the charge transfer and surface reaction processes and find that the surface reaction enhances the photovoltage via a reaction-related photoinduced charge transfer regime as demonstrated on a SrTiO3 photoanode. We show that the reaction-related charge transfer induces a change in the surface potential that is linearly correlated to the interfacial charge transfer rate of water oxidation. The linear behavior is independent of the applied bias and light intensity and reveals a general rule for interfacial transfer of photogenerated minority carriers. We anticipate the linear rule to be a phenomenological theory for describing interfacial charge transfer in photoelectrocatalysis.

7.
Nano Lett ; 21(20): 8901-8909, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647747

RESUMO

The involvement between electron transfer (ET) and catalytic reaction at the electrocatalyst surface makes the electrochemical process challenging to understand and control. Even ET process, a primary step, is still ambiguous because it is unclear how the ET process is related to the nanostructured electrocatalyst. Herein, locally enhanced ET current dominated by mass transport effect at corner and edge sites bounded by {111} facets on single Au triangular nanoplates was clearly imaged. After decoupling mass transport effect, the ET rate constant of corner sites was measured to be about 2-fold that of basal {111} plane. Further, we demonstrated that spatial heterogeneity of local inner potential differences of Au nanoplates/solution interfaces plays a key role in the ET process, supported by the linear correlation between the logarithm of rate constants and the potential differences of different sites. These results provide direct images for heterogeneous ET, which helps to understand and control the nanoscopic electrochemical process and electrode design.

8.
Angew Chem Int Ed Engl ; 61(16): e202117567, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35100475

RESUMO

The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.

9.
Angew Chem Int Ed Engl ; 61(28): e202204108, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35522460

RESUMO

Metal-organic frameworks (MOFs) have been intensively studied as a class of semiconductor-like materials in photocatalysis. However, band bending, which plays a crucial role in semiconductor photocatalysis, has not yet been demonstrated in MOF photocatalysts. Herein, a representative MOF, MIL-125-NH2 , is integrated with the metal oxides (MoO3 and V2 O5 ) that feature appropriate work functions and energy levels to afford the corresponding MOF composites. Surface photovoltage results demonstrate band bending in the MOF composites, which gives rise to the built-in electric field of MIL-125-NH2 , boosting the charge separation. As a result, the MOF composites present 56 and 42 times higher activities, respectively, compared to the pristine MOF for photocatalytic H2 production. Upon depositing Pt onto the MOF, ∼6 times higher activity is achieved. This work illustrates band bending of MOFs for the first time, supporting their semiconductor-like nature, which would greatly promote MOF photocatalysis.

10.
Angew Chem Int Ed Engl ; 61(30): e202204272, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35535639

RESUMO

Plasmon-induced chemical reaction is an emerging field but its development faces huge challenges because of low quantum efficiency. Herein, we report that the solar energy conversion efficiency of Au/TiO2 in plasmon-induced water oxidation is greatly enhanced by intercalating Li+ into TiO2 . An incident photon-to-current efficiency as high as 2.0 %@520 nm is achieved by Au/Li0.2 TiO2 in photoelectrocatalytic water oxidation, realizing a 33-fold enhancement in photocurrent density compared with Au/TiO2 . The superior photoelectrocatalytic performance is mainly ascribed to the enhanced electric conductivity and higher catalytic activity of Li0.2 TiO2 . Furthermore, the ultrafast transient absorption spectroscopy suggests that lithium intercalation into TiO2 could change the dynamics of hot electron relaxation in Au nanoparticles. This work demonstrates that intercalation of alkaline ions into semiconductors can promote the charge separation efficiency of the plasmonic effect of Au/TiO2 .

11.
J Am Chem Soc ; 143(32): 12499-12508, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34343431

RESUMO

Photoelectrochemical overall water splitting has been considered as a promising approach for producing chemical energy from solar energy. Although many photoelectrochemical cells have been developed for overall water splitting by coupling two semiconductor photoelectrodes, inefficient charge transfer between the light-harvesters and electron acceptor/donor severely restricts the solar energy conversion efficiency. Inspired by natural photosynthesis, we assembled a photoelectrochemical platform with multimediator modulation to achieve unassisted overall water splitting. Photogenerated electrons are transferred in order through multimediators driven by the electrochemical potential gradient, resulting in efficient charge separation and transportation with enhanced charge transfer rate and reduced charge recombination rate. The integrated system composed of inorganic oxide-based photoanode (BiVO4) and organic polymer-based photocathode (PBDB-T:ITIC:PC71BM) with complementary light absorption, exhibits a solar-to-hydrogen conversion efficiency as high as 4.3%. This work makes a rational design possible by constructing an efficient charge-transfer chain in artificial photosynthesis systems for solar fuel production.

12.
Small ; 17(49): e2103224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611983

RESUMO

Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.

13.
Angew Chem Int Ed Engl ; 60(13): 7376-7381, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33590614

RESUMO

Three-dimensional (3D) organic-inorganic hybrid perovskites have demonstrated excellent capability in solar fuel production, while the two-dimensional (2D) counterparts are generally considered inferior candidates due to the high exciton binding energy and weak light absorption. Herein, contrary to our common understanding, we find that 2D perovskites can perform photocatalytic H2 production from HI splitting more efficiently than their 3D counterparts. We observed sharp difference between 2D perovskites crystals with organic phenylalkylammonium cations of different lengths and the 3D counterparts in their stabilization behavior in aqueous solution. Moreover, we show that the organic cations length of the 2D perovskites affects the nanostructures, optoelectronic properties, and the charge transfer process significantly, which determines the photocatalytic activity of the 2D perovskites. Among the 2D perovskites under investigation, phenylmethylammonium lead iodide with the shortest organic cations achieved the best solar-to-chemical conversion efficiency of ca. 1.57 %, which is the highest value ever reported for hybrid perovskites.

14.
Angew Chem Int Ed Engl ; 60(21): 11966-11972, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33590572

RESUMO

Ferrihydrite (Fh) has been demonstrated as an effective interfacial layer for photoanodes to achieve outstanding photoelectrochemical (PEC) performance for water oxidation reaction owing to its unique hole-storage function. However, it is unknown whether such a hole-storage layer can be used to construct highly efficient photocathodes for hydrogen evolution reaction (HER). In this work, we report Fh interfacial engineering of amorphous silicon photocathode (with nickel as HER cocatalyst) achieving a photocurrent density of 15.6 mA cm-2 at 0 V vs. the reversible hydrogen electrode and a half-cell energy conversion efficiency of 4.08 % in alkaline solution, outperforming most of reported a-Si based photocathodes including multi-junction configurations integrated with noble metal cocatalysts in acid solution. Besides, the photocurrent density is maintained above 14 mA cm-2 for 175 min with 100 % Faradaic efficiency for HER in alkaline solution. Our results demonstrate a feasible approach to construct efficient photocathodes via the application of a hole-storage layer.

15.
Angew Chem Int Ed Engl ; 60(11): 6160-6169, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289198

RESUMO

Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c ) at which CH3 OH molecules dissociate to form the CH3 O adsorbate (CH3 O(a)Ti4c ). CH3 O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3 O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3 O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.

16.
J Chem Phys ; 152(19): 194702, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687246

RESUMO

In the plasmonic metal-semiconductor systems, the interfacial structure is vital for both charge separation and photocatalytic reaction. However, the role of interfacial defects, a ubiquitous phenomenon in the metal-semiconductor heterostructure, is not well understood, especially for the hot hole-involved water oxidation reaction. Herein, we studied the effect of interfacial defects, derived from oxygen vacancies, on plasmonic photocatalytic water oxidation. In addition, we found that the plasmon-induced water oxidation activity decreased with the increase in the oxygen vacancies present at the interface, and the activity of Au/TiO2 can be restored after eliminating the defects via a post-oxidation treatment. It is elucidated that a defect state appeared below the conduction band of TiO2 as a result of interfacial defects, which acts as the electron traps and backward transfer channel for electrons to combine with the holes left at the interface. The charge recombination at defect sites leads to the shorter lifetime of hot holes, which is harmful for the kinetics-sluggish water oxidation. This work emphasizes the significance of the interface structure for the plasmon-based photocatalytic process.

17.
Nano Lett ; 19(1): 426-432, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30585727

RESUMO

Defects can markedly impact the performance of semiconductor-based photocatalysts, where the spatial separation of photogenerated charges is required for converting solar energy into fuels. However, understanding exactly how defects affect photogenerated charge separation at nanometer scale remains quite challenging. Here, using time- and space-resolved surface photovoltage approaches, we demonstrate that the distribution of surface photogenerated charges and the direction of photogenerated charge separation are determined by the defects distributed within a 100 nm surface region of a photocatalytic Cu2O particle. This is enabled by the defect-induced charge separation process, arising from the trapping of electrons at the near-surface defect states and the accumulation of holes at the surface states. More importantly, the driving force for defect-induced charge separation is greater than 4.2 kV/cm and can be used to drive photocatalytic reactions. These findings highlight the importance of near-surface defect engineering in promoting photogenerated charge separation and manipulating surface photogenerated charges; further, they open up a powerful avenue for improving photocatalytic charge separation and solar energy conversion efficiency.

18.
Angew Chem Int Ed Engl ; 59(41): 18218-18223, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32671941

RESUMO

Controlling the interaction of polarization light with an asymmetric nanostructure such as a metal/semiconductor heterostructure provides opportunities for tuning surface plasmon excitation and near-field spatial distribution. However, light polarization effects on interfacial charge transport and the photocatalysis of plasmonic metal/semiconductor photocatalysts are unclear. Herein, we reveal the polarization dependence of plasmonic charge separation and spatial distribution in Au/TiO2 nanoparticles under 45° incident light illumination at the single-particle level using a combination of photon-irradiated Kelvin probe force microscopy (KPFM) and electromagnetic field simulation. We quantitatively uncover the relationship between the local charge density and polarization angle by investigating the polarization-dependent surface photovoltage (SPV). The plasmon-induced photocatalytic activity is enhanced when the polarization direction is perpendicular to the Au/TiO2 interface.

19.
Angew Chem Int Ed Engl ; 59(24): 9653-9658, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181560

RESUMO

Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2 /O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+ /Fe2+ . Well-defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar-to-chemical efficiency over 1.9 % and a solar-to-hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.

20.
Angew Chem Int Ed Engl ; 59(37): 16209-16217, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32430972

RESUMO

Polymeric carbon nitride modified with selected heteroatom dopants was prepared and used as a model photocatalyst to identify and understand the key mechanisms required for efficient photoproduction of H2 O2 via selective oxygen reduction reaction (ORR). The photochemical production of H2 O2 was achieved at a millimolar level per hour under visible-light irradiation along with 100 % apparent quantum yield (in 360-450 nm region) and 96 % selectivity in an electrochemical system (0.1 V vs. RHE). Spectroscopic analysis in spatiotemporal resolution and theoretical calculations revealed that the synergistic association of alkali and sulfur dopants in the polymeric matrix promoted the interlayer charge separation and polarization of trapped electrons for preferable oxygen capture and reduction in ORR kinetics. This work highlights the key features that are responsible for controlling the photocatalytic activity and selectivity toward the two-electron ORR, which should be the basis of further development of solar H2 O2 production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA