Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ageing Res Rev ; 100: 102373, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960046

RESUMO

Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.

2.
Front Aging Neurosci ; 16: 1333289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699559

RESUMO

Background: Linear associations between circulating insulin-like growth factor-1 (IGF-1) levels and Parkinson's disease (PD) have been evidenced in observational studies. Yet, the causal relationship between IGF-1 levels and PD remains obscure. We conducted Mendelian randomization to examine the correlation between genetically predicted IGF-1 levels and PD. Methods: By reviewing genome-wide association studies (GWAS) that are publicly accessible, we uncovered SNPs linked to both serum concentrations of IGF-1 and PD. A two-sample Mendelian randomization (MR) analysis was carried out to evaluate the individual effect of IGF-1 on PD. Results: In a primary causal effects model in MR analysis, employing the inverse-variance weighted (IVW) method, IGF-1 levels exhibited a notable association with the risk of PD (OR, 1.020, 95% CI, 1.003-1.038, p = 0.0215). Multiple evaluations revealed that horizontal pleiotropy was improbable to distort the main results (MR-Egger: P PD intercept =0.719), and no bias was detected by leave-one-out analysis. Conclusion: This study unearthed evidence indicating that heightened IGF-1 levels might be causally correlated with an increased risk of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA