Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anticancer Drugs ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39012720

RESUMO

Multiple myeloma, which is a clonal plasma cell tumor, derives from a postmitotic lymphoid B-cell lineage and remains untreatable. Group XVI phospholipase A2 (PLA2G16) can either be a tumor suppressor or an oncogene in different types of cancer. This study was intended to explore the role of PLA2G16 in multiple myeloma and to reveal the reaction mechanism. The mRNA and protein expressions of PLA2G16 in human bone marrow stromal cell line HS-5 and multiple myeloma cells were assessed using reverse transcription-quantitative PCR and western blot. The transfection efficacy of sh-PLA2G16 and oe-YAP was examined using reverse transcription-quantitative PCR and western blot. Through cell counting kit-8 assay and 5-ethynyl-2'- deoxyuridine staining, multiple myeloma cell viability and proliferation were detected. Flow cytometry was used to measure cell apoptosis and cell cycle distribution. Oxygen consumption rate, the activities of mitochondrial respiratory chain complexes I-V, and the activity of caspase-3 were estimated with Seahorse XF24 analyzer, oxidative phosphorylation activity assay kit, and caspase-3 assay kit, respectively. Lactate production and glucose consumption were evaluated usingcorresponding assay kits. Western blot was employed to meaure proteins associated with cell cycle, glycolysis, pentose phosphate pathway as well as Hippo/YAP signaling pathway. In this study, PLA2G16 expression was greatly increased in multiple myeloma cells and PLA2G16 silence inhibited cell proliferation, promoted cell apoptosis, facilitated cell cycle arrest, and suppressed the reprogramming of glucose metabolism in multiple myeloma. It was also identified that PLA2G16 depletion inhibited the Hippo/YAP signaling pathway. Further experiments revealed that the overexpression of YAP partially reversed the inhibitory effects of PLA2G16 silence on multiple myeloma cell malignant development and the reprogramming of glucose metabolism. Collectively, PLA2G16 silence impeded multiple myeloma progression and inhibited glucose metabolism reprogramming by blocking the Hippo/YAP signaling pathway.

2.
Phys Chem Chem Phys ; 25(28): 18609-18622, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37404043

RESUMO

Light alkenes are the key building blocks in the chemical industry. As a propene on-purpose production technology, propane dehydrogenation has drawn particular attention due to the growing demand for propene and the discovery of large reserves of shale gas. The development of highly active and stable propane dehydrogenation catalysts is significant in the world-wide research field. Supported platinum-based catalysts are widely studied for propane dehydrogenation. This article reviews the developments of platinum-based catalysts in propane dehydrogenation, particularly focusing on the influence of the promoter effect and support effect on the structure and catalytic performance and especially on how promoters and supports enable Pt to form highly dispersed and stable active sites. At the end, we propose the prospective research directions of propane dehydrogenation.

3.
Appl Opt ; 62(6): 1616-1627, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821327

RESUMO

To realize the flow visualization of shock train structures by Schlieren measurements in a square-to-circular transition isolator, a high-precision conformal optical window was manufactured by fly-cutting technology. According to the light refraction principle, the window's outer surface was iteratively optimized based on the super-elliptic curves of the internal flow channel. Through tolerance analysis and processing parameter optimization, the transmitted wavefront error (RMS value) of the finished window was 0.823λ (λ=632.8n m). Based on a z-type Schlieren apparatus, the high-precision Schlieren measurements were conducted through the window and processed by an image filtering process method. The results promote high-precision Schlieren observation towards square-to-circular transition isolators.

4.
J Environ Sci (China) ; 125: 82-94, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375963

RESUMO

The performance of catalysts used in after-treatment systems is the key factor for the removal of diesel soot, which is an important component of atmospheric fine particle emissions. Herein, three-dimensionally ordered macroporous-mesoporous TixSi1-xO2 (3DOM-m TixSi1-xO2) and its supported MnOx catalysts doped with different alkali/alkaline-earth metals (AMnOx/3DOM-m Ti0.7Si0.3O2 (A: Li, Na, K, Ru, Cs, Mg, Ca, Sr, Ba)) were prepared by mesoporous template (P123)-assisted colloidal crystal template (CCT) and incipient wetness impregnation methods, respectively. Physicochemical characterizations of the catalysts were performed using scanning electron microscopy, X-ray diffraction, N2 adsorption-desorption, H2 temperature-programmed reduction, O2 temperature-programmed desorption, NO temperature-programmed oxidation, and Raman spectroscopy techniques; then, we evaluated their catalytic performances for the removal of diesel soot particles. The results show that the 3DOM-m Ti0.7Si0.3O2 supports exhibited a well-defined 3DOM-m nanostructure, and AMnOx nanoparticles with 10-50 nm were evenly dispersed on the inner walls of the uniform macropores. In addition, the as-prepared catalysts exhibited good catalytic performance for soot combustion. Among the prepared catalysts, CsMnOx/3DOM-m Ti0.7Si0.3O2 had the highest catalytic activity for soot combustion, with T10, T50, and T90 (the temperatures corresponding to soot conversion rates of 10%, 50%, and 90%) values of 285, 355, and 393°C, respectively. The high catalytic activity of the CsMnOx/3DOM-m Ti0.7Si0.3O2 catalysts was attributed to their excellent low-temperature reducibility and homogeneous macroporous-mesoporous structure, as well as to the synergistic effects between Cs and Mn species and between CsMnOx and the Ti0.7Si0.3O2 support.

5.
Appl Opt ; 61(21): 6289-6296, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256243

RESUMO

In order to perform the flow visualization of a shock train structure by the schlieren imaging method in the cylindrical isolator, to the best of our knowledge, a novel integrative design and processing scheme of an aluminum alloy pipe with an acrylic conformal optical window pair are proposed. The optical ray tracing and wavefront correction methods were applied to design the inner cylindrical surfaces and outer aspherical cylindrical surfaces of the optical window pair for parallel light correction based on the conjoint analysis with the processing capability. Under the tolerance analysis and the optimization of the machining path, the integrative model was fabricated on a three-axis computer numerical control machine using two-axis turning and fast tool servo machining. The wavefront aberration (peak-to-valley value) and wavefront aberration (RMS) of the optical window pair were corrected within 12.189 and 2.658λ (λ=632.8nm) in the observation area which met the requirements of high-precision schlieren observation.

6.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361514

RESUMO

PtSn catalysts were synthesized by incipient-wetness impregnation using a dendritic mesoporous silica nanoparticle support. The catalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS and Raman, and their catalytic performance for propane dehydrogenation was tested. The influences of Pt/Sn ratios were investigated. Changing the Pt/Sn ratios influences the interaction between Pt and Sn. The catalyst with a Pt/Sn ratio of 1:2 possesses the highest interaction between Pt and Sn. The best catalytic performance was obtained for the Pt1Sn2/DMSN catalyst with an initial propane conversion of 34.9%. The good catalytic performance of this catalyst is ascribed to the small nanoparticle size of PtSn and the favorable chemical state and dispersion degree of Pt and Sn species.


Assuntos
Nanopartículas , Propano , Propano/química , Dióxido de Silício/química , Estanho/química , Platina/química
7.
Langmuir ; 37(37): 11061-11071, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34492186

RESUMO

Endowing metallic surfaces with special wettability and unique interfacial contacts broadens their wide application fields. Herein, superhydrophobic and lubricant-infused ultraslippery surfaces were achieved through chemical etching, low surface energy molecule grafting, and lubricant infusion. Systematic comparison studies of the surface wettability, self-cleaning, anti-icing, anticorrosion behaviors, and mechanical durability were carried out to reveal the functional differences and mechanisms. Both superhydrophobic and ultraslippery surfaces exhibit a distinct decrease in ice adhesion strength and a remarkable increase in charge-transfer resistance, demonstrating significantly improved ice overdelay and corrosion-resisting performance. Most notably, given the existence of a stable, defect-free, and inert lubricant-infused layer, the lubricant-infused ultraslippery surfaces possess superior mechanical robustness and long-term corrosion resistance, which provides better application potential under challenging service environments.

8.
Nano Lett ; 20(6): 4270-4277, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412244

RESUMO

The potential screening effect of one-dimensional ZnO nanorods from carriers has been theoretically proved to severely limit its piezoelectricity, but its exact mechanism needs to be further revealed in experiments to guide the design of piezoelectric semiconductors. Here, a discretely structured design was proposed to prevent the free carriers from tunneling among adjacent ZnO nanorods for suppressing the screening effect. Piezoresponse force microscope and finite element analysis were employed in combination to uncover the underlying mechanism in experiment. Further, the output voltage of this discretely structured device was 1.62 times higher than that of the nondesigned device, which clearly authenticates this suppression behavior. Besides, this design prompts an unexpected improvement in flexibility, where the flexural modulus of this piezo-film was reduced by 35.74%. Notably, this work opens a new way to understand the potential screening effect, as expected, and to advance the development of piezo-electronics toward better piezoelectricity and more excellent flexibility.

9.
Langmuir ; 36(14): 3887-3893, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32176507

RESUMO

Alcohols are reported to have superlubricity at low loads during sliding; however, their lubricity under high loads has rarely been reported. Meanwhile, the lubrication mechanism of alcohols under high loads is still not well understood. Here, we first report the lubricity of methanol under 98 N and 1450 rpm and demonstrate the formation of graphene and fullerene-like nanostructures induced by tribochemical reactions. Results show that the lubrication mechanism was mainly attributed to the friction-induced graphene under boundary lubrication condition. Besides that, the wear rate of a YG8 hard alloy ball mainly occurred at the run-in processes, and the friction-induced graphene effectively inhibited further wear after the run-in processes. The formation mechanism of graphene was well investigated, and the flash temperature rise and catalyst (WC, WO2, and WO3) were the major causes for the formation of graphene.

10.
Mater Horiz ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045609

RESUMO

Due to the inherent damage effect, friction heat is commonly undesirable yet inevitable in moving components. Hence, obtaining robust running of mechanical assemblies under high sliding velocity is challenging. Herein, we report an alternative strategy to design robust self-healing lubricity materials by taking advantage of friction heat-driven solid-liquid phase transition employing facile coatings of n-alkanols/epoxy resin. The lubricity performance of composite coatings increased with sliding velocity, leading to a low friction coefficient (0.066) and wear rate (1.968 × 10-7 mm3 N-1 m-1) under 5000 rpm. The low friction was mainly attributed to the controlled phase-transition characteristics of n-alkanols, which absorbed friction heat to release liquid n-alkanols for maintaining intelligent shear interfaces. The low wear was ascribed to the high load-bearing capacity and self-healing property of composite coatings. Our study may guide a common framework to rationally design self-healing lubricant materials via solid-liquid phase transition by utilizing the undesirable (yet inevitable) friction heat. Our approach could achieve the robust, ultralow friction and wear of moving components under harsh working conditions.

11.
JAMA Oncol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052306

RESUMO

Importance: Patients with high-risk newly diagnosed multiple myeloma (NDMM) often have poor outcomes with standard treatments, necessitating novel effective frontline therapies to enhance clinical outcomes. GC012F, a B-cell maturation antigen/CD19 dual-targeting chimeric antigen receptor (CAR) T-cell therapy, has been developed on the novel FasTCAR platform. Notably, its use as a frontline therapy for patients with high-risk NDMM who are eligible for transplant has not been thoroughly explored. Objective: To examine the safety, pharmacokinetics, and patient health and survival outcomes associated with GC012F in individuals with NDMM. Design, Setting, and Participants: Patients were enrolled in this single-arm, open-label phase 1 cohort study between June 28, 2021, and June 1, 2023 (the data cutoff date). All patients included in this study were treated at a single center, Shanghai Changzheng Hospital. The patients in the efficacy evaluation were followed up for a minimum period of 3 months. Intervention: Patients underwent 2 cycles of induction therapy, followed by GC012F infusion (at 1 × 105 cells/kg, 2 × 105 cells/kg, or 3 × 105 cells/kg). Main Outcomes and Measures: The primary goals were to assess the safety, efficacy, and pharmacokinetics of GC012F at various dose levels. Results: Of 22 patients receiving GC012F treatment, 6 experienced mild to moderate cytokine release syndrome (grade 1-2) and none experienced neurotoxic effects. Nineteen patients were included in the efficacy evaluation, and all 19 patients showed stringent complete responses and achieved minimal residual disease negativity. The treatment's effectiveness was consistent across different dose levels. GC012F demonstrated a rapid response, with a median time to first stringent complete response of 84 days (range, 26-267 days) and achieving minimal residual disease negativity within 28 days (range, 23-135 days). The CAR T-cell expansion was robust, with a median peak copy number of 60 652 copies/µg genomic DNA (range, 8754-331 159 copies/µg genomic DNA), and the median time to median peak copy number was 10 days (range, 9-14 days). Conclusions and Relevance: The findings of this single-arm, open-label phase 1 cohort study suggest that GC012F may be a safe treatment associated with positive health and survival outcomes for patients with high-risk NDMM eligible for transplant. Owing to the small sample size, further studies with larger cohorts and longer follow-up durations are needed.

12.
Adv Colloid Interface Sci ; 309: 102790, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36193602

RESUMO

Ti3C2Tx MXene, a revolutionary 2D material, has shown bright prospects in various fields, including energy conversion and storage, electronic devices, electromagnetic interference shielding, catalysis, biomedicine etc. The large specific surface area, high electrical conductivity, abundant surface terminations, and the highest stiffness among all solution-processed 2D materials of Ti3C2Tx MXene make it a rising star in polymer composites. Not only have Ti3C2Tx MXene-based polymer composites come into prominence in sensing, energy storage, and photothermal conversion fields as is widely known, but they have also shown great potential in corrosion and tribology fields. Hence, this critical review provides a comprehensive overview of the synthesis strategies, mechanical, and tribological properties of Ti3C2Tx MXene and the recent advances of Ti3C2Tx MXene reinforced polymer composites in corrosion and tribology aspects. The challenges of Ti3C2Tx-based polymer composites faced in corrosion and tribology fields are also summarized. This analysis of Ti3C2Tx-based polymer composites will stimulate a booming field including but not limited to corrosion and tribology, bringing Ti3C2Tx MXene from lab to engineering application.

13.
J Colloid Interface Sci ; 602: 131-145, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119753

RESUMO

It is difficult for Ti3C2Tx-containing epoxy coatings to prevent electrochemical corrosion at the metal/coating interface after long-term exposure to corrosive environments. Thus, endowing Ti3C2Tx-containing epoxy coatings with self-healing function and good wear resistance is very significant. Here, a novel self-healing epoxy coating (f-Ti3C2Tx-ZB@EP) is designed via incorporating with amino-functionalized Ti3C2Tx loading 2-methylimidazole zinc salt (ZIF-8) nanocontainer@benzotriazole (f-Ti3C2Tx-ZB) multifunctional composite filler, and its anti-corrosion and tribological properties are evaluated in detail. The as-prepared f-Ti3C2Tx-ZB@EP shows an order of magnitude enhancement in coating resistance (Rc) and achieves self-healing function under severe environment, which are attributed to the synergistic effect of passive and active protection. Specially, the change of pH value caused by electrochemical corrosion could induce the nanocontainer to release BTA, thereby forming corrosion inhibition films on the coating/metal interface. Besides, the wear rate of f-Ti3C2Tx-ZB@EP is decreased by one order of magnitude because of the lubrication effect of Ti3C2Tx at the friction interface and the high resistance to plastic deformation of epoxy composite coating. Therefore, f-Ti3C2Tx-ZB@EP with better self-healing, anti-corrosion and tribological properties is equipped with long-term metal protection ability and enlightens a thought-provoking idea for corrosion and wear resistance.

14.
Int J Neurosci ; 120(6): 428-38, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20504214

RESUMO

Our previous study has proven that hypothalamic paraventricular nucleus (PVN) plays a role in antinociception. The effects of studied classical neurotransmitter on PVN antinociceptive modulation were investigated in the rat. The results showed: (1) Pain stimulation increased norepinephrine (NE), but not epinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DA metabolic product), homovanilic acid (DA metabolic product), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HT metabolic product), acetycholine (Ach), choline (Ach metabolic product), gamma-aminobutyric acid (GABA), and L-glutamate acid concentrations in the PVN perfusion liquid; (2) PVN stimulation with L-glutamate sodium, which excited local neurons only, did not influence the concentrations of the studied classical neurotransmitter and metabolic product in the PVN perfusion liquid; (3) Microinjection of NE, epinephrine, or L-glutamate sodium into the PVN elevated pain threshold, and local administration of GABA decreased pain threshold in a dose-dependent manner, but PVN administration of Ach, DA, or 5-HT did not change pain threshold; (4) Microinjection of phentolamine (alpha-receptor antagonist) or MK801 [NMDA-receptor antagonist] into the PVN reduced pain threshold, and local administration of bicuculline (GABA-receptor antagonist) raised pain threshold, but PVN administration of propranolol (beta-receptor antagonist), atropine (Muscarinic cholinergic receptor antagonist), 6-OH gallamine (Nicotinic cholinergic receptor antagonist), fluperidol (DA-receptor antagonist), or cyproheptadine (5-HT-receptor antagonist) did not alter pain threshold. The data suggested that endogenous NE, not epinephrine, 5-HT, Ach, GABA, and L-glutamate acid played an important role in the PVN antinociceptive modulation.


Assuntos
Norepinefrina/metabolismo , Dor/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Ácido Glutâmico/metabolismo , Masculino , Neurotransmissores/metabolismo , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/metabolismo
15.
Materials (Basel) ; 12(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934703

RESUMO

Organic hybrid damping materials have achieved sustainable development in recent years for superior damping properties due to the hydrogen bonding of hindered phenol. However, the aggregation and crystallization of hindered phenol in the matrix can lead to a sharp decline in material properties. Thus, a series of hindered phenol hybrid carboxylated nitrile rubber (XNBR) composites with different types and contents of hindered phenol were prepared by melt blending to study the effects of different hindered phenol on the properties of organic hybrid damping materials. A dynamic mechanical analyzer (DMA) and scanning electron microscope (SEM) were used to study the dynamic mechanical properties and cross-section morphology of composites. X-ray diffraction (XRD) was used to study the crystallization of hindered phenol. The results show that the properties of organic hybrid damping materials were affected by the structure of hindered phenol, and that hindered phenol molecules with a linear structure had better performances. The greater the number of hydrogen bonds between hindered phenol and the XNBR matrix, the more difficult it was for the hindered phenol to crystallize.

16.
Materials (Basel) ; 12(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480334

RESUMO

Graphene has been considered an ideal nanoscale reinforced phase for preparing high-performance composites, but the poor compatibility and weak interfacial interaction with the matrix have limited its application. Here a highly effective and environmentally friendly method for the functionalization of graphene is proposed through an interaction between as-exfoliated graphene and (3-aminopropyl) triethoxysilane (KH550), in which 1-butylsulfonate-3-methylimidazolium bisulfate (BSO3HMIm)(HSO4) ionic-liquids-modified graphene was prepared via an electrochemical exfoliation of graphite in (BSO3HMIm)(HSO4) solution, then (BSO3HMIm)(HSO4)-modified graphene as a precursor was reacted with amine groups of KH550 for obtaining (BSO3HMIm)(HSO4)/KH550-functionalized graphene. The final products as filler into carboxylated acrylonitrile‒butadiene rubber (XNBR) improve the dynamic mechanical properties. The improvement in the dynamic mechanical properties of the nanocomposite mainly depends on high interfacial interaction and graphene's performance characteristics, as well as a good dispersion between functionalized graphene and the XNBR matrix.

17.
RSC Adv ; 8(31): 17300-17311, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35539239

RESUMO

To improve the dispersion of talcum powder (Talc) for polymer applications, modified nano-titania powders (TiO2) using a silane coupling agent (KH550), a titanate coupling agent (NDZ201) and sodium polyacrylate (PAAS) were well adhered to the surface of Talc with a ball milling method, thereby preparing a series of mixed Talc@TiO2 particles to realize good dispersion in carboxylated acrylonitrile-butadiene rubber (XNBR). Note that Talc@TiO2 particles modified by PAAS and NDZ201 show better colloidal dispersion in anhydrous ethanol due to organification and repulsion of charge, with original Talc and NDZ201 modified Talc@TiO2 powders as a comparison. Modified Talc@TiO2 hybrid XNBR shows good performance characteristics, including damping capacity and impact resistance, depending mainly on the excellent mechanical property of Talc, good dispersion and the high adhesive force between modified Talc@TiO2 and XNBR.

18.
Hum Immunol ; 68(2): 135-44, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17321904

RESUMO

Cynomolgus macaques are relevant models for human diseases and transplantation. In each case, a complete understanding of these models requires knowledge of the macaque major histocompatibility complex (MHC). Because of high polymorphism and multiple genes per haplotype, it has been difficult to develop a rapid typing method for cynomolgus monkey MHC class II. We developed a simple and rapid polymerase chain reaction-sequence specific primer (PCR-SSP) strategy for Chinese cynomolgus monkey DRB locus typing. Forty Chinese cynomolgus monkeys originating from the Guangxi Province in China were included in the study. Twenty nine cynomolgus monkey allele-specific primer pairs were designed based on published Macaca fascicularis (Mafa)-DRB locus gene sequences. Allele-specific PCR products ranged in size from 143 to 253 bp; 5' and 3' Mafa-DRB locus allele specific primers were located in the second exon. Specific PCR product gel purification was followed by direct sequencing in both directions. Our data showed prominent variability in the number of Mafa-DRB sequences ranging from 2 to 7 per animal. This analysis demonstrated that most of the amplicons were identical to Mafa-DRB sequences that our PCR primers were to amplify. However, 98 to 99% similarity was noticed in the case of Mafa-DRB4*0101, Mafa-DRB*W2101, and Mafa-DRB*W4901 sequences. The observed mismatches were located in nonpolymorphic regions. Thus, haplotype analysis confirmed the existence of allelic associations published earlier. In addition, we propose a new DRB sequence. The established medium-resolution PCR-SSP technique appears to be a highly reproducible and discriminatory typing method for detecting polymorphisms of DRB genes in Chinese cynomolgus monkeys.


Assuntos
Primers do DNA/genética , Antígenos HLA-DR/genética , Macaca fascicularis/genética , Reação em Cadeia da Polimerase/métodos , Alelos , Animais , Sequência de Bases , Éxons , Genótipo , Cadeias alfa de HLA-DR , Dados de Sequência Molecular , Polimorfismo Genético , Alinhamento de Sequência , Especificidade da Espécie
19.
Nanoscale ; 9(35): 13079-13088, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28848951

RESUMO

Graphene with impressive electrical, optical, chemical and mechanical properties has promising potential applications for photoelectric devices and mechanical components installed on the space facilities, which will probably face hostile environments including high-energy particulate irradiation. Here we explored the effect of simulated space irradiation on the structure and properties of large-area single-layer and multi-layer graphene films (about four layers) including atomic oxygen (AO), electron (EL) and proton (PR). AO with strong oxidizing capacity reacts with carbon atoms of graphene films and generates carbon dioxide, high-energy PR leads to polymorphic atomic defects in graphene through collision and excitation effects. Miraculously, EL irradiation causes little damage to the graphene films because of the excellent conductivity. Graphene ripples are broken by irradiation and adapt their shape or structure with respect to the substrate via thermodynamic stability, which causes the change of the physical and mechanical properties of graphene.

20.
Rev Sci Instrum ; 88(8): 083301, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863657

RESUMO

4H-silicon carbide (4H-SiC) detectors are well suited for measurements of fission neutron pulse shape for their compact size, excellent radiation resistance, and hydrogen free composition. The aim of this study is to improve the 4H-SiC detector's sensitivity to fission neutron pulses. 4H-SiC detectors with varied epilayer thicknesses are fabricated and then tested in the pulsed neutron field of the Chinese Fast Burst Reactor II (CFBR II). The sensitivity of the 4H-SiC detector to the CFBR II neutron pulse is increased by 139.8%, with the enlargement of epilayer thickness from 20 µm to 120 µm. By employing the proton-recoil method, the sensitivity of the 4H-SiC detector to the CFBR II neutron pulse is further increased by 11.6%. With enhanced sensitivity to fission neutron pulses, 4H-SiC detectors are promising devices for high intensity neutron pulse measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA