Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(10): 303, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153119

RESUMO

Dye-decolorizing peroxidases (DyPs) belong to a novel superfamily of heme peroxidases that can oxidize recalcitrant compounds. In the current study, the GlDyP2 gene from Ganoderma lucidum was heterologously expressed in Escherichia coli, and the enzymatic properties of the recombinant GlDyP2 protein were investigated. The GlDyP2 protein could oxidize not only the typical peroxidase substrate ABTS but also two lignin substrates, namely guaiacol and 2,6-dimethoxy phenol (DMP). For the ABTS substrate, the optimum pH and temperature of GlDyP2 were 4.0 and 35 °C, respectively. The pH stability and thermal stability of GlDyP2 were also measured; the results showed that GlDyP2 could function normally in the acidic environment, with a T50 value of 51 °C. Moreover, compared to untreated controls, the activity of GlDyP2 was inhibited by 1.60 mM of Mg2+, Ni2+, Mn2+, and ethanol; 0.16 mM of Cu2+, Zn2+, methanol, isopropyl alcohol, and Na2EDTA·2H2O; and 0.016 mM of Fe2+ and SDS. The kinetic constants of recombinant GlDyP2 for oxidizing ABTS, Reactive Blue 19, guaiacol, and DMP were determined; the results showed that the recombination GlDyP2 exhibited the strongest affinity and the most remarkable catalytic efficiency towards guaiacol in the selected substrates. GlDyP2 also exhibited decolorization and detoxification capabilities towards several dyes, including Reactive Blue 19, Reactive Brilliant Blue X-BR, Reactive Black 5, Methyl Orange, Trypan Blue, and Malachite Green. In conclusion, GlDyP2 has good application potential for treating dye wastewater.


Assuntos
Corantes , Estabilidade Enzimática , Escherichia coli , Guaiacol , Proteínas Recombinantes , Reishi , Temperatura , Corantes/metabolismo , Corantes/química , Reishi/genética , Reishi/enzimologia , Reishi/metabolismo , Concentração de Íons de Hidrogênio , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Guaiacol/metabolismo , Guaiacol/análogos & derivados , Biodegradação Ambiental , Cinética , Benzotiazóis/metabolismo , Especificidade por Substrato , Lignina/metabolismo , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Peroxidase/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Peroxidases/genética , Peroxidases/metabolismo , Peroxidases/química , Poluentes Químicos da Água/metabolismo , Compostos Azo/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Ácidos Sulfônicos/metabolismo , Antraquinonas , Corantes de Rosanilina
2.
BMC Genomics ; 24(1): 447, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553575

RESUMO

BACKGROUND: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mß, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.


Assuntos
Genoma de Planta , Lonicera , Lonicera/genética , Lonicera/metabolismo , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Família Multigênica , Filogenia , Regulação da Expressão Gênica de Plantas , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Appl Environ Microbiol ; 89(2): e0173822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719242

RESUMO

Site-specific recombinases (integrases) can mediate the horizontal transfer of genomic islands. The ability to integrate large DNA sequences into target sites is very important for genetic engineering in prokaryotic and eukaryotic cells. Here, we characterized an unprecedented catalogue of 530 tyrosine-type integrases by examining genes potentially encoding tyrosine integrases in bacterial genomic islands. The phylogeny of putative tyrosine integrases revealed that these integrases form an evolutionary clade that is distinct from those already known and are affiliated with novel integrase groups. We systematically searched for candidate integrase genes, and their integration activities were validated in a bacterial model. We verified the integration functions of six representative novel integrases by using a two-plasmid integration system consisting of a donor plasmid carrying the integrase gene and attP site and a recipient plasmid harboring an attB site in recA-deficient Escherichia coli. Further quantitative reverse transcription-PCR (qRT-PCR) assays validated that the six selected integrases can be expressed with their native promoters in E. coli. The attP region reductions showed that the extent of attP sites of integrases is approximately 200 bp for integration capacity. In addition, mutational analysis showed that the conserved tyrosine at the C terminus is essential for catalysis, confirming that these candidate proteins belong to the tyrosine-type recombinase superfamily, i.e., tyrosine integrases. This study revealed that the novel integrases from bacterial genomic islands have site-specific recombination functions, which is of physiological significance for their genomic islands in bacterial chromosomes. More importantly, our discovery expands the toolbox for genetic engineering, especially for efficient integration activity. IMPORTANCE Site-specific recombinases or integrases have high specificity for DNA large fragment integration, which is urgently needed for gene editing. However, known integrases are not sufficient for meeting multiple integrations. In this work, we discovered an array of integrases through bioinformatics analysis in bacterial genomes. Phylogeny and functional assays revealed that these new integrases belong to tyrosine-type integrases and have the ability to conduct site-specific recombination. Moreover, attP region extent and catalysis site analysis were characterized. Our study provides the methodology for discovery of novel integrases and increases the capacity of weapon pool for genetic engineering in bacteria.


Assuntos
Bacteriófagos , Integrases , Integrases/genética , Integrases/metabolismo , Ilhas Genômicas , Escherichia coli/genética , Escherichia coli/metabolismo , Tirosina/genética , Plasmídeos/genética , Bacteriófagos/genética , Sítios de Ligação Microbiológicos
4.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203542

RESUMO

The current study aims to investigate the therapeutic potential of luteolin (Lut), a naturally occurring flavonoid found in various medicinal plants, for treating chronic obstructive pulmonary disease (COPD) through both in vitro and in vivo studies. The results demonstrated that Lut increased body weight, reduced lung tissue swelling and lung damage indices, mitigated systemic oxidative stress levels, and decreased alveolar fusion in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD mice. Additionally, Lut was observed to downregulate the expression of the TRPV1 and CYP2A13 proteins while upregulating SIRT6 and NRF2 protein expression in CS + LPS-induced COPD mice and cigarette smoke extract (CSE)-treated A549 cells. The concentrations of total reactive oxygen species (ROS) and mitochondrial ROS in A549 cells induced by CSE significantly increased. Moreover, CSE caused a notable elevation of intracellular Ca2+ levels in A549 cells. Importantly, Lut exhibited inhibitory effects on the inward flow of Ca2+ and attenuated the overproduction of mitochondrial and intracellular ROS in A549 cells treated with CSE. In conclusion, Lut demonstrated a protective role in alleviating oxidative stress and inflammation in CS + LPS-induced COPD mice and CSE-treated A549 cells by regulating TRPV1/SIRT6 and CYP2A13/NRF2 signaling pathways.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Sirtuínas , Animais , Camundongos , Luteolina , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Lipopolissacarídeos , Sistema Enzimático do Citocromo P-450 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Estresse Oxidativo , Glicosiltransferases , Transdução de Sinais , Canais de Cátion TRPV
5.
BMC Plant Biol ; 22(1): 219, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477355

RESUMO

BACKGROUND: Mentha canadensis L. has important economic value for the production of essential oils, which are synthesised, secreted and stored in peltate glandular trichomes. As a typical multicellular secretory trichome, glandular trichomes are important biological factories for the synthesis of some specialised metabolites. However, little is known about the molecular mechanism of glandular trichome development in M. canadensis. RESULTS: In this study, the R2R3-MYB transcription factor gene McMIXTA was isolated to investigate its function in glandular trichome development. Bioinformatics analysis indicated that McMIXTA belonged to the subgroup 9 R2R3-MYB, with a R2R3 DNA-binding domain and conserved subgroup 9 motifs. A subcellular localisation assay indicated that McMIXTA was localised in the nucleus. Transactivation analysis indicated that McMIXTA was a positive regulator, with transactivation regions located between positions N253 and N307. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that McMIXTA formed a complex with McHD-Zip3, a trichome development-related HD-ZIP IV transcription factor. Overexpression of McMIXTA in Mentha × piperita L. caused an increase in peltate glandular trichomes density of approximately 25% on the leaf abaxial surface. CONCLUSIONS: Our results demonstrated that the subgroup 9 R2R3-MYB transcription factor McMIXTA has a positive effect on regulating peltate glandular trichome development and the MIXTA/HD-ZIP IV complexes might be conserved regulators for glandular trichome initiation. These results provide useful information for revealing the regulatory mechanism of multicellular glandular trichome development.


Assuntos
Mentha , Óleos Voláteis , Óleos Voláteis/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
6.
Brief Bioinform ; 21(4): 1347-1355, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31192359

RESUMO

Streptococcus pneumoniae is the most common human respiratory pathogen, and ß-lactam antibiotics have been employed to treat infections caused by S. pneumoniae for decades. ß-lactam resistance is steadily increasing in pneumococci and is mainly associated with the alteration in penicillin-binding proteins (PBPs) that reduce binding affinity of antibiotics to PBPs. However, the high variability of PBPs in clinical isolates and their mosaic gene structure hamper the predication of resistance level according to the PBP gene sequences. In this study, we developed a systematic strategy for applying supervised machine learning to predict S. pneumoniae antimicrobial susceptibility to ß-lactam antibiotics. We combined published PBP sequences with minimum inhibitory concentration (MIC) values as labelled data and the sequences from NCBI database without MIC values as unlabelled data to develop an approach, using only a fragment from pbp2x (750 bp) and a fragment from pbp2b (750 bp) to predicate the cefuroxime and amoxicillin resistance. We further validated the performance of the supervised learning model by constructing mutants containing the randomly selected pbps and testing more clinical strains isolated from Chinese hospital. In addition, we established the association between resistance phenotypes and serotypes and sequence type of S. pneumoniae using our approach, which facilitate the understanding of the worldwide epidemiology of S. pneumonia.


Assuntos
Streptococcus pneumoniae/efeitos dos fármacos , Aprendizado de Máquina Supervisionado , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Humanos , Testes de Sensibilidade Microbiana
7.
Arch Microbiol ; 204(8): 514, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867171

RESUMO

Ganoderma lucidum is an edible mushroom highly regarded in the traditional Chinese medicine. To better understand the molecular mechanisms underlying fruiting body development in G. lucidum, transcriptome analysis based on RNA sequencing was carried out on different developmental stages: mycelium (G1); primordium (G2); young fruiting body (G3); mature fruiting body (G4); fruiting body in post-sporulation stage (G5). In total, 26,137 unigenes with an average length of 1078 bp were de novo assembled. Functional annotation of transcriptomes matched 72.49% of the unigenes to known proteins available in at least one database. Differentially expressed genes (DEGs) were identified between the evaluated stages: 3135 DEGs in G1 versus G2; 120 in G2 versus G3; 3919 in G3 versus G4; and 1012 in G4 versus G5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs identified in G1 versus G2 revealed that, in addition to global and overview maps, enriched pathways were related to amino acid metabolism and carbohydrate metabolism. In contrast, DEGs identified in G2 versus G3 were mainly assigned to the category of metabolism of amino acids and their derivatives, comprising mostly upregulated unigenes. In addition, highly expressed unigenes associated with the transition between different developmental stages were identified, including those encoding hydrophobins, cytochrome P450s, extracellular proteases, and several transcription factors. Meanwhile, highly expressed unigenes related to meiosis such as DMC1, MSH4, HOP1, and Mek1 were also analyzed. Our study provides important insights into the molecular mechanisms underlying fruiting body development and sporulation in G. lucidum.


Assuntos
Reishi , Transcriptoma , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Micélio , Reishi/genética
8.
Chem Biodivers ; 19(9): e202200506, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35853836

RESUMO

The utilization of bamboo industry exhibits varied but still needs to be improved. Bamboo leaf flavonoid (BLF) is an important resource of bamboo which has become a research focus. However, the isolation and purification techniques of four flavonoid carbon glycosides (orientin, isoorientin, vitexin, and isovitexin) from BLF were still confronted with difficulties due to their complex and similar structures, which obstructed the development of bamboo utilization. In this article, a purification technology of four flavonoid carbon glycosides from BLF by Sephadex LH-20 was improved. The results were evaluated by HPLC and pharmacological activity. Specifically, the eluent, flow rate, and loading amount were investigated, respectively. According to the results, the eluent would dominate the isolation effect among three factors. High concentration of isoorientin and four flavonoid carbon glycosides would be obtained under the optimized condition (The eluent was 70 % methanol, the loading amount was 1.5 g, and the flow rate was 0.5 mL/min). Meanwhile, the link between flavonoid carbon glycosides content and their antioxidant activity in vitro was also revealed. Overall, the results suggested that BLF may serve as potential functional food additives and medicine.


Assuntos
Antioxidantes , Metanol , Antioxidantes/química , Carbono , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Glicosídeos , Extratos Vegetais/química , Folhas de Planta/química
9.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445565

RESUMO

Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1-McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mentha/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mentha/genética , Mentha/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/genética , Homologia de Sequência
10.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466786

RESUMO

Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Mutação , Óleos de Plantas/metabolismo , Caules de Planta/genética , Sementes/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Forma Celular/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo
11.
Trees (Berl West) ; 34(1): 267-283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435087

RESUMO

KEY MESSAGE: Transcriptomic analysis of the relationship between gene expression patterns and flavonoid contents in the flower buds of Lonicera japonica under light-induced conditions, especially the flavonoid pathway genes and transcription factors. ABSTRACT: Flos Lonicerae Japonicae (FLJ), the flower buds of Lonicera japonica Thunb., has been used to treat some human diseases including severe respiratory syndromes and hand-foot-and-mouth diseases owing to its putative antibacterial, and antiviral effects. Luteoloside is a flavonoid that is used by the Chinese Pharmacopoeia to evaluate the quality of FLJ. Light is an important environmental factor that affects flavonoid biosynthesis in the flower buds of L. japonica. However, how light triggers increases in flavonoid production remains unclear. To enhance our understanding of the mechanism involved in light-regulated flavonoid biosynthesis, we sequenced the transcriptomes of L. japonica exposed to three different light conditions: 100% light intensity (CK), 50% light intensity (LI50), and 25% light intensity (LI25) using an Illumina HiSeq 4000 System. A total of 77,297 unigenes with an average length of 809 bp were obtained. Among them, 43,334 unigenes (56.06%) could be matched to at least one biomolecular database. Additionally, 4188, 1545 and 1023 differentially expressed genes (DEGs) were identified by comparative transcriptomics LI25-vs-CK, LI50-vs-CK, and LI25-vs-LI50, respectively. Of note, genes known to be involved in flavonoid biosynthesis, such as 4-coumarate coenzyme A ligase (4CL), and chalcone synthase (CHS) were up-regulated. In addition, a total of 1649 transcription factors (TFs) were identified and divided into 58 TF families; 98 TFs exhibited highly dynamic changes in response to light intensity. Quantitative real-time PCR (qRT-PCR) was used to test the expression profiles of the RNA sequencing (RNA-Seq) data. This study offers insight into how transcriptional expression pattern is influenced by light in the flower buds of L. japonica, and will enhance the understanding of molecular mechanisms of flavonoid biosynthesis in response to light in L. japonica.

12.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514380

RESUMO

Lonicera japonica Thunb. is a widely used medicinal plant and is rich in a variety of active ingredients. Flavonoids are one of the important components in L. japonica and their content is an important indicator for evaluating the quality of this herb. To study the regulation of flavonoid biosynthesis in L. japonica, an R2R3-MYB transcription factor gene LjaMYB12 was isolated and characterized. Bioinformatics analysis indicated that LjaMYB12 belonged to the subgroup 7, with a typical R2R3 DNA-binding domain and conserved subgroup 7 motifs. The transcriptional level of LjaMYB12 was proportional to the total flavonoid content during the development of L. japonica flowers. Subcellular localization analysis revealed that LjaMYB12 localized to the nucleus. Transactivation activity assay indicated that LjaMYB12 was a transcriptional activator. Then, ectopic expression of LjaMYB12 in Arabidopsis could increase PAL activity and flavonoid content and promote transcription of a range of flavonoid biosynthetic genes. Interestingly, the fold changes of downstream genes in the flavonoid biosynthetic pathway were significantly higher than that of the upstream genes, which suggested that LjaMYB12 may have different regulatory patterns for the upstream and downstream pathways of flavonoid biosynthesis. The results provided here will effectively facilitate the study of subgroup 7 MYBs and transcriptional regulation of flavonoid biosynthesis in L. japonica.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Genes de Plantas , Lonicera/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
13.
Pak J Pharm Sci ; 32(6): 2745-2750, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31969310

RESUMO

This study evaluates the antibacterial and antifungal activities of petroleum ether, acetic ether, n-butanol and aqueous extracts from Anoectochilus roxburghii. The in vitro antibacterial and antifungal effects against three bacterial strains (Escherichia coli, Bacillus subtilis, Bacillus thuringiensis) and three fungal species (Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea Pers., Fusahum graminearum Sehw.) were assayed by the dilution and disc-diffusion methods. All of the polar extracts expressed dose-dependent antimicrobial activity against all tested microorganisms. The most active extract was aqueous extract, with a minimum inhibitory concentration below 0.625mg/ml in both bacteria and fungi. The results suggest that new chemical classes of natural antimicrobial substances (such as A. roxiburghii extracts) can be selectively exploited for the chemotherapy and control of infectious diseases.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Orchidaceae/química , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Bacillus thuringiensis/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Gibberella/efeitos dos fármacos , Helminthosporium/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação
14.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103476

RESUMO

Mentha canadensis L. has important economic value for its abundance in essential oils. Menthol is the main component of M. canadensis essential oils, which is certainly the best-known monoterpene for its simple structure and wide applications. However, the regulation of menthol biosynthesis remains elusive in M. canadensis. In this study, transcriptome sequencing of M. canadensis with MeJA treatment was applied to illustrate the transcriptional regulation of plant secondary metabolites, especially menthol biosynthesis. Six sequencing libraries were constructed including three replicates for both control check (CK) and methyl jasmonate (MeJA) treatment and at least 8 Gb clean bases was produced for each library. After assembly, a total of 81,843 unigenes were obtained with an average length of 724 bp. Functional annotation indicated that 64.55% of unigenes could be annotated in at least one database. Additionally, 4430 differentially expressed genes (DEGs) with 2383 up-regulated and 2047 down-regulated transcripts were identified under MeJA treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that "Monoterpenoid biosynthesis" was one of the most significantly enriched pathways in metabolism. Subsequently, DEGs involved in JA signal transduction, transcription factors, and monoterpene biosynthesis were analyzed. 9 orthologous genes involved in menthol biosynthesis were also identified. This is the first report of a transcriptome study of M. canadensis and will facilitate the studies of monoterpene biosynthesis in the genus Mentha.


Assuntos
Acetatos/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Monoterpenos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Mentha
15.
J Food Sci Technol ; 55(9): 3518-3525, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150810

RESUMO

To determine the authenticity of Anoectochilus roxburghii, this study presents an application of near-infrared spectroscopy and chemometric methods for evaluating adulteration of A. roxburghii with two cheaper adulterants, i.e. C. Goodyera schlechtendaliana and Ludisia discolor. Partial least squares discriminant analysis models were built for the accurate classification of authentic A. roxburghii and A. roxburghii adulterated at 5-100% (w/w) levels. Partial least squares regression models were used to predict the level of adulteration in the A. roxburghii. After by compared different spectral pretreatment methods, and using interval PLS and synergy interval PLS for variable selection, optimum models were developed. These results show that the NIR spectroscopy combined with chemometric methods offers a simple, fast, and reliable method for classifying and quantifying the adulteration of A. roxburghii.

17.
Plant Sci ; 348: 112212, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39134122

RESUMO

Monoterpenoids are the main components of Mentha canadensis essential oil. Monoterpene biosynthetic pathways have been explored, but the regulatory mechanisms remain unclarified. We identified an abscisic acid (ABA)-inducible A-type basic leucine zipper (bZIP) transcription factor McbZIP1 that was localized in the nucleus and positively regulates monoterpene synthesis. McbZIP1 was expressed in most M. canadensis tissues and was induced under ABA, mannitol, and NaCl treatments. McbZIP1 had transcriptional activity in yeast and the N terminus (amino acids 75-117) was sufficient for transactivation. Yeast one-hybrid and Dual-Luciferase assays showed that McbZIP1 binds to ABA-responsive elements in the promoter region of limonene synthase gene. Yeast two-hybrid and biomolecular fluorescence complementation assays revealed that McbZIP1 interacts with McSnRK2.4. Overexpression of McbZIP1 in peppermint resulted in dramatically up-regulated monoterpene biosynthesis gene levels and increased menthol contents. The results support a transcriptional regulation mechanism in which McbZIP1 serves as a positive regulator of menthol biogenesis. These findings contribute to the molecular mechanism of monoterpenoid biogenesis, which may have uses in genetic engineering and menthol production.


Assuntos
Regulação da Expressão Gênica de Plantas , Mentha , Monoterpenos , Proteínas de Plantas , Mentha/metabolismo , Mentha/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Monoterpenos/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas
18.
Front Plant Sci ; 14: 1188922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324667

RESUMO

Mentha canadensis L. is an important spice crop and medicinal herb with high economic value. The plant is covered with peltate glandular trichomes, which are responsible for the biosynthesis and secretion of volatile oils. Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family involved in various plant physiological processes. Here, we cloned and identified a non-specific lipid transfer protein gene (McLTPII.9) from M. canadensis, which may positively regulate peltate glandular trichome density and monoterpene metabolism. McLTPII.9 was expressed in most M. canadensis tissues. The GUS signal driven by the McLTPII.9 promoter in transgenic Nicotiana tabacum was observed in stems, leaves, and roots; it was also expressed in trichomes. McLTPII.9 was associated with the plasma membrane. Overexpression of McLTPII.9 in peppermint (Mentha piperita. L) significantly increased the peltate glandular trichome density and total volatile compound content compared with wild-type peppermint; it also altered the volatile oil composition. In McLTPII.9-overexpressing (OE) peppermint, the expression levels of several monoterpenoid synthase genes and glandular trichome development-related transcription factors-such as limonene synthase (LS), limonene-3-hydroxylase (L3OH), geranyl diphosphate synthase (GPPS), HD-ZIP3, and MIXTA-exhibited varying degrees of alteration. McLTPII.9 overexpression resulted in both a change in expression of genes for terpenoid biosynthetic pathways which corresponded with an altered terpenoid profile in OE plants. In addition, peltate glandular trichome density was altered in the OE plants as well as the expression of genes for transcription factors that were shown to be involved in trichome development in plants.

19.
J Plant Physiol ; 272: 153690, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35397464

RESUMO

This study aimed to investigate the effects of light quality on the morphological traits, photosynthetic pigment content, protective enzyme (superoxide dismutase, peroxidase, and catalase) activity, and bioactive compound (BSP, total phenol, and militarine) content in Bletilla striata. Plants of B. striata were grown under light filtered through three differently colored films. The treatments were red film (RF), yellow film (YF), and blue film (BF), and an uncovered treatment was included as a control (CK). Compared with the B. striata plants in the RF, YF, and CK treatment groups, those receiving BF treatment showed significantly promoted growth of the aerial parts. Meanwhile, the total phenol and militarine contents in B. striata tubers were increased without affecting the accumulation of B. striata polysaccharides. These results show that growing B. striata plants under blue film could be a useful technique to improve quality and production. This technique is conducive to achieving large-scale sustainable production of high-quality plant materials.


Assuntos
Orchidaceae , Fenol , Fenóis , Tubérculos , Polissacarídeos/farmacologia
20.
Nat Genet ; 54(9): 1355-1363, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982161

RESUMO

Most genetic variants identified from genome-wide association studies (GWAS) in humans are noncoding, indicating their role in gene regulation. Previous studies have shown considerable links of GWAS signals to expression quantitative trait loci (eQTLs) but the links to other genetic regulatory mechanisms, such as splicing QTLs (sQTLs), are underexplored. Here, we introduce an sQTL mapping method, testing for heterogeneity between isoform-eQTL effects (THISTLE), with improved power over competing methods. Applying THISTLE together with a complementary sQTL mapping strategy to brain transcriptomic (n = 2,865) and genotype data, we identified 12,794 genes with cis-sQTLs at P < 5 × 10-8, approximately 61% of which were distinct from eQTLs. Integrating the sQTL data into GWAS for 12 brain-related complex traits (including diseases), we identified 244 genes associated with the traits through cis-sQTLs, approximately 61% of which could not be discovered using the corresponding eQTL data. Our study demonstrates the distinct role of most sQTLs in the genetic regulation of transcription and complex trait variation.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Splicing de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA