Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858434

RESUMO

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Assuntos
Acetamidas , Antivirais , Isoindóis , Vírus Lassa , Fatores de Terminação de Peptídeos , Piperidonas , RNA Polimerase Dependente de RNA , Proteínas Virais , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Isoindóis/farmacologia , Isoindóis/uso terapêutico , Febre Lassa/tratamento farmacológico , Vírus Lassa/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteoma , Proteômica , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
2.
J Asian Nat Prod Res ; : 1-9, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247111

RESUMO

Rauvolfia dichotoma, a shrub of Apocynaceae, was collected from the Islands of SAO Tome and Principe and cultivated locally for medicinal purpose. Phytochemical investigation of 95% ethanol extract from the stems and leaves of R. dichotoma led to the isolation of two new Nb-oxide indole alkaloids, namely Nb-oxide-mitoridine (1) and Nb-oxide-raucaffricine (2), together with two known alkaloids (3-4) and eleven known lignans (5-15). Their chemical structures were elucidated by extensive NMR and HR-ESI-MS data analysis. All compounds (except 13) were tested for their ß-hematin inhibitory activity. Compounds 2, 4, 14, and 15 showed certain inhibitory activity, indicating that they may have an antimalarial effect.

3.
J Asian Nat Prod Res ; : 1-28, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958647

RESUMO

The SwissTargetPrediction was employed to predict the potential drug targets of the active component of Si-Miao-Yong-An decoction (SMYAD). The therapeutic targets for HF were searched in the Genecard database, and Cytoscape3.9.1 software was used to construct the "drug-component-target-disease network" diagram. In addition, the String platform was used to construct Protein-Protein Interaction (PPI) network, and the DAVID database was used for GO and KEGG analysis. AutoDockTools-1.5.6 software was used for molecular docking verification. Network pharmacology studies have shown that AKT 1, ALB, and CASP 3 are the key targets of action of SMYAD against heart failure. The active compounds are quercetin and kaempferol.

4.
Nat Commun ; 14(1): 4159, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443171

RESUMO

Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Compartimentos de Replicação Viral , Transcrição Gênica , Replicação Viral , Nucleotidiltransferases/genética
5.
Cell Rep ; 38(12): 110544, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320713

RESUMO

Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral RNA genome in the cytoplasm of host cells, where cellular factors can antagonize or facilitate the virus life cycle. Here we leverage proximity proteomics and conduct a small interfering RNA (siRNA) screen to define the functional interactome of EBOV polymerase. As a proof of principle, we validate two cellular mRNA decay factors from 35 identified host factors: eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1) and up-frameshift protein 1 (UPF1). Our data suggest that EBOV can subvert restrictions of cellular mRNA decay and repurpose GSPT1 and UPF1 to promote viral replication. Treating EBOV-infected human hepatocytes with a drug candidate that targets GSPT1 for degradation significantly reduces viral RNA load and particle production. Our work demonstrates the utility of proximity proteomics to capture the functional host interactome of the EBOV polymerase and to illuminate host-dependent regulation of viral RNA synthesis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Ebolavirus/genética , Interações Hospedeiro-Patógeno , Humanos , Proteômica , RNA Helicases/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Transativadores , Replicação Viral
6.
Sci Transl Med ; 14(668): eabq0991, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288283

RESUMO

Developing potent therapeutics and effective vaccines are the ultimate goals in controlling infectious diseases. Lassa virus (LASV), the causative pathogen of Lassa fever (LF), infects hundreds of thousands annually, but effective antivirals or vaccines against LASV infection are still lacking. Furthermore, neutralizing antibodies against LASV are rare. Here, we describe biochemical analyses and high-resolution cryo-electron microscopy structures of a therapeutic cocktail of three broadly protective antibodies that target the LASV glycoprotein complex (GPC), previously identified from survivors of multiple LASV infections. Structural and mechanistic analyses reveal compatible neutralizing epitopes and complementary neutralization mechanisms that offer high potency, broad range, and resistance to escape. These antibodies either circumvent or exploit specific glycans comprising the extensive glycan shield of GPC. Further, they require mammalian glycosylation, native GPC cleavage, and proper GPC trimerization. These findings guided engineering of a next-generation GPC antigen suitable for future neutralizing antibody and vaccine discovery. Together, these results explain protective mechanisms of rare, broad, and potent antibodies and identify a strategy for the rational design of therapeutic modalities against LF and related infectious diseases.


Assuntos
Febre Lassa , Vacinas Virais , Animais , Humanos , Vírus Lassa , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos , Glicoproteínas , Polissacarídeos , Antivirais , Mamíferos
7.
PLoS Negl Trop Dis ; 12(4): e0006443, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29694346

RESUMO

Dengue virus (DENV) is the most prevalent and burdensome arbovirus transmitted by Aedes mosquitoes, against which there is only a limited licensed vaccine and no approved drug treatment. A Chromobacterium species, C. sp. Panama, isolated from the midgut of A. aegypti is able to inhibit DENV replication within the mosquito and in vitro. Here we show that C. sp. Panama mediates its anti-DENV activity through secreted factors that are proteinous in nature. The inhibitory effect occurs prior to virus attachment to cells, and is attributed to a factor that destabilizes the virion by promoting the degradation of the viral envelope protein. Bioassay-guided fractionation, coupled with mass spectrometry, allowed for the identification of a C. sp. Panama-secreted neutral protease and an aminopeptidase that are co-expressed and appear to act synergistically to degrade the viral envelope (E) protein and thus prevent viral attachment and subsequent infection of cells. This is the first study characterizing the anti-DENV activity of a common soil and mosquito-associated bacterium, thereby contributing towards understanding how such bacteria may limit disease transmission, and providing new tools for dengue prevention and therapeutics.


Assuntos
Aminopeptidases/farmacologia , Antivirais/farmacologia , Chromobacterium/enzimologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Proteínas do Envelope Viral/metabolismo , Proteínas de Bactérias/farmacologia , Dengue/virologia , Vírus da Dengue/fisiologia , Sistema Digestório/virologia , Proteólise , Vírion/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
8.
mBio ; 9(5)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301857

RESUMO

Ebola virus (EBOV) genome and mRNAs contain long, structured regions that could hijack host RNA-binding proteins to facilitate infection. We performed RNA affinity chromatography coupled with mass spectrometry to identify host proteins that bind to EBOV RNAs and identified four high-confidence proviral host factors, including Staufen1 (STAU1), which specifically binds both 3' and 5' extracistronic regions of the EBOV genome. We confirmed that EBOV infection rate and production of infectious particles were significantly reduced in STAU1-depleted cells. STAU1 was recruited to sites of EBOV RNA synthesis upon infection and enhanced viral RNA synthesis. Furthermore, STAU1 interacts with EBOV nucleoprotein (NP), virion protein 30 (VP30), and VP35; the latter two bridge the viral polymerase to the NP-coated genome, forming the viral ribonucleoprotein (RNP) complex. Our data indicate that STAU1 plays a critical role in EBOV replication by coordinating interactions between the viral genome and RNA synthesis machinery.IMPORTANCE Ebola virus (EBOV) is a negative-strand RNA virus with significant public health importance. Currently, no therapeutics are available for Ebola, which imposes an urgent need for a better understanding of EBOV biology. Here we dissected the virus-host interplay between EBOV and host RNA-binding proteins. We identified novel EBOV host factors, including Staufen1, which interacts with multiple viral factors and is required for efficient viral RNA synthesis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Ebolavirus/genética , Interações Hospedeiro-Patógeno , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/genética , Genoma Viral , Humanos , Ligação Proteica , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA