Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 137, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970074

RESUMO

BACKGROUND: The outcome of hepatocellular carcinoma (HCC) is limited by its complex molecular characteristics and changeable tumor microenvironment (TME). Here we focused on elucidating the functional consequences of Maternal embryonic leucine zipper kinase (MELK) in the tumorigenesis, progression and metastasis of HCC, and exploring the effect of MELK on immune cell regulation in the TME, meanwhile clarifying the corresponding signaling networks. METHODS: Bioinformatic analysis was used to validate the prognostic value of MELK for HCC. Murine xenograft assays and HCC lung metastasis mouse model confirmed the role of MELK in tumorigenesis and metastasis in HCC. Luciferase assays, RNA sequencing, immunopurification-mass spectrometry (IP-MS) and coimmunoprecipitation (CoIP) were applied to explore the upstream regulators, downstream essential molecules and corresponding mechanisms of MELK in HCC. RESULTS: We confirmed MELK to be a reliable prognostic factor of HCC and identified MELK as an effective candidate in facilitating the tumorigenesis, progression, and metastasis of HCC; the effects of MELK depended on the targeted regulation of the upstream factor miR-505-3p and interaction with STAT3, which induced STAT3 phosphorylation and increased the expression of its target gene CCL2 in HCC. In addition, we confirmed that tumor cell-intrinsic MELK inhibition is beneficial in stimulating M1 macrophage polarization, hindering M2 macrophage polarization and inducing CD8 + T-cell recruitment, which are dependent on the alteration of CCL2 expression. Importantly, MELK inhibition amplified RT-related immune effects, thereby synergizing with RT to exert substantial antitumor effects. OTS167, an inhibitor of MELK, was also proven to effectively impair the growth and progression of HCC and exert a superior antitumor effect in combination with radiotherapy (RT). CONCLUSIONS: Altogether, our findings highlight the functional role of MELK as a promising target in molecular therapy and in the combination of RT therapy to improve antitumor effect for HCC.


Assuntos
Carcinoma Hepatocelular , Quimiocina CCL2 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/radioterapia , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quimiocina CCL2/metabolismo , Linhagem Celular Tumoral , Tolerância a Radiação , Prognóstico , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , MicroRNAs/genética
2.
Exp Cell Res ; 425(1): 113525, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841324

RESUMO

Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteômica , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Metástase Neoplásica , Histona-Lisina N-Metiltransferase/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Culina/metabolismo
3.
Biol Proced Online ; 25(1): 13, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208604

RESUMO

BACKGROUND: The treatment efficacy of transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) varies widely between individuals. The aim of this study was to identify subtype landscapes and responser related to TACE, and further clarify the regulatory effect and corresponding mechanism of NDRG1 on HCC tumorgenesis and metastasis. METHODS: The principal component analysis (PCA) algorithm was used to construct a TACE response scoring (TRscore) system. The random forest algorithm was applied to identify the TACE response-related core gene NDRG1 of HCC, and its role in the prognosis of HCC was explored. The role of NDRG1 in the progression and metastasis of HCC and functional mechanism were confirmed using several experimental methods. RESULTS: Based on the GSE14520 and GSE104580 cohorts, we identified 2 TACE response-related molecular subtypes for HCC with significant differences in clinical features, and the TACE prognosis of Cluster A was significantly better than that of Cluster B (p < 0.0001). We then established the TRscore system and found that the low TRscore group showed a higher probability of survival and a lower rate of recurrence than the high TRscore group (p < 0.05) in both the HCC and TACE-treated HCC cohorts within the GSE14520 cohort. NDRG1 was determined to be the the hub gene associated with the TACE response of HCC and its high expression suggested a poor prognosis. Furthermore, The suppression of NDRG1 konckdown in tumorgenesis and metastasis of HCC was clarified in both vivo and vitro, which was importantly achieved through inducing ferroptosis in HCC cells, especially contributing to RLS3-induced ferroptosis. CONCLUSION: The constructed TACE response-related molecular subtypes and TRscores can specifically and accurately predict TACE prognosis for HCC. In addition, the TACE response-related hub gene NDRG1 may act as a guardian against ferroptosis to drive tumorgenesis and metastasis in HCC, which laid a new foundation for the development of new potential targeted therapy strategies to improve disease prognosis in HCC patients.

4.
Cancer Cell Int ; 22(1): 65, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135548

RESUMO

BACKGROUND: Tumor microenvironments are characterized by resistance to chemotherapeutic agents and radiotherapy. Hypoxia plays an important role in the development of tumor resistance, as well as the generation of metastatic potential. YAP also participates in the regulation of hypoxia-mediated chemoresistance, and is negatively regulated by protein tyrosine phosphatase non-receptor type 14 (PTPN14). METHODS: The PTPN14 expression in hepatocellular carcinoma (HCC) tissues were evaluated by qRT-PCR, western blot and tissue microarrays. The effect of PTPN14 on HCC progression was investigated in vitro and in vivo. RESULTS: Here, we report that PTPN14 expression was downregulated in HCC tissues and cell lines. Silencing PTPN14 significantly enhanced proliferation, migration, invasion of HepG2 cells in vitro and tumor growth and metastasis in vivo, whereas overexpression of PTPN14 significantly inhibited these abilities in SK-Hep1 cells. We also found that hypoxia-induced nuclear translocation and accumulation of PTPN14 led to resistance to sorafenib in HCC cells. Further mechanistic studies suggested that NPM1 regulates PTPN14 localization, and that NPM1 regulates YAP by retaining PTPN14 in the nucleus under hypoxic conditions. CONCLUSIONS: These data suggest that a therapeutic strategy against chemoresistant HCC may involve disruption of NPM1-mediated regulation of YAP by retaining PTPN14 in the nucleus under hypoxic conditions.

5.
Pharmacol Res ; 177: 106140, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202819

RESUMO

Sorafenib, a multikinase inhibitor, is the first-line agent for advanced liver cancer. Sorafenib strongly inhibits both cell proliferation and tumour angiogenesis. However, the development of drug resistance hampers its anticancer efficacy. To improve the antitumour activity of sorafenib, we demonstrate that piperlongumine (PL), an alkaloid isolated from the fruits and roots of Piper longum L., enhances the cytotoxicity of sorafenib in HCCLM3 and SMMC7721 cells using the cell counting kit-8 test. Flow cytometry analysis indicated that PL and sorafenib cotreatment induced robust reactive oxygen species (ROS) generation and mitochondrial dysfunction, thereby increasing the number of apoptotic cells and the ratio of G2/M phase cells in both HCCLM3 and SMMC7721 cells. Furthermore, AMP-protein kinase (AMPK) signalling was activated by excess ROS accumulation and mediated growth inhibition in response to PL and sorafenib cotreatment. RNA-sequencing analysis indicated that PL treatment disrupted RNA processing in HCCLM3 cells. In particular, PL treatment decreased the expression of cleavage and polyadenylation specificity factor 7 (CPSF7), a subunit of cleavage factor I, in a time- and concentration-dependent manner in HCCLM3 and SMMC7721 cells. CPSF7 knockdown using a gene interference strategy promoted growth inhibition of PL or sorafenib monotherapy, whereas CPSF7 overexpression alleviated the cytotoxicity of sorafenib in cultured liver cancer cells. Finally, PL and sorafenib coadministration significantly reduced the weight and volume of HCCLM3 cell xenografts in vivo. Taken together, our data indicate that PL displays potential synergistic antitumour activity in combination with sorafenib in liver cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Hepáticas , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Fator de Especificidade de Clivagem e Poliadenilação , Dioxolanos , Humanos , Neoplasias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe/farmacologia
6.
J Nanobiotechnology ; 20(1): 179, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366904

RESUMO

Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/métodos , Neoplasias Hepáticas/tratamento farmacológico , Microesferas
7.
FASEB J ; 34(4): 5420-5434, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32080912

RESUMO

Activated oncogenes and loss of tumor suppressors contribute to reprogrammed energy metabolism and induce aerobic glycolysis, also known as Warburg effect. MicroRNAs are profoundly implicated in human malignancies by inhibiting translation of multiple mRNA targets. Using hepatocellular carcinoma (HCC) molecular profiles from The Cancer Genome Atlas (TCGA), we identified a handful of dysregulated microRNA in HCC glycolysis, especially miR-34c-3p. Antagonization of miR-34c-3p inhibited the lactate production, glucose consumption, extracellular acidification rate (ECAR), and aggressive proliferation in HCC cells. Hijacking glycolysis by 2-deoxy-d-glucose or galactose largely abrogated the suppressive effects of miR-34c-3p inhibition in HCC. Membrane associated guanylate kinase, WW, and PDZ domain containing 3 (MAGI3) is then identified as a direct functional target of miR-34c-3p in regulating HCC glycolysis and oncogenic activities. Mechanistically, MAGI3 physically interacted with ß-catenin to regulate its transcriptional activity and c-Myc expression, which further facilitates the Warburg effect by increasing expression of glycolytic genes including HK2, PFKL, and LDHA. Moreover, overexpressed miR-34c-3p and reduced MAGI3 predicted poor clinical outcome and was closely associated with the maximum standard uptake value (SUVmax) in HCC patients who received preoperative 18 F-FDG PET/CT. Our findings elucidate critical several microRNAs implicated in HCC glycolysis and reveal a novel function of miR-34c-3p/MAGI3 axis in Warburg effect through regulating ß-catenin activity.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Efeito Warburg em Oncologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biomed Sci ; 28(1): 44, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112167

RESUMO

BACKGROUND: Cholangiocarcinoma represents the second most common primary liver malignancy. The incidence rate has constantly increased over the last decades. Cholangiocarcinoma silent nature limits early diagnosis and prevents efficient treatment. METHODS: Immunoblotting and immunohistochemistry were used to assess the expression profiling of USP9X and EGLN3 in cholangiocarcinoma patients. ShRNA was used to silence gene expression. Cell apoptosis, cell cycle, CCK8, clone formation, shRNA interference and xenograft mouse model were used to explore biological function of USP9X and EGLN3. The underlying molecular mechanism of USP9X in cholangiocarcinoma was determined by immunoblotting, co-immunoprecipitation and quantitative real time PCR (qPCR). RESULTS: Here we demonstrated that USP9X is downregulated in cholangiocarcinoma which contributes to tumorigenesis. The expression of USP9X in cholangiocarcinoma inhibited cell proliferation and colony formation in vitro as well as xenograft tumorigenicity in vivo. Clinical data demonstrated that expression levels of USP9X were positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that USP9X was involved in the deubiquitination of EGLN3, a member of 2-oxoglutarate and iron-dependent dioxygenases. USP9X elicited tumor suppressor role by preventing degradation of EGLN3. Importantly, knockdown of EGLN3 impaired USP9X-mediated suppression of proliferation. USP9X positively regulated the expression level of apoptosis pathway genes de through EGLN3 thus involved in apoptosis of cholangiocarcinoma. CONCLUSION: These findings help to understand that USP9X alleviates the malignant potential of cholangiocarcinoma through upregulation of EGLN3. Consequently, we provide novel insight into that USP9X is a potential biomarker or serves as a therapeutic or diagnostic target for cholangiocarcinoma.


Assuntos
Apoptose/genética , Colangiocarcinoma/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Cinesinas/genética , Ubiquitina Tiolesterase/genética , Animais , Colangiocarcinoma/genética , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Cinesinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
9.
Eur Radiol ; 31(10): 7500-7511, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33860832

RESUMO

OBJECTIVES: To develop and validate a pre-transcatheter arterial chemoembolization (TACE) MRI-based radiomics model for predicting tumor response in intermediate-advanced hepatocellular carcinoma (HCC) patients. MATERIALS: Ninety-nine intermediate-advanced HCC patients (69 for training, 30 for validation) treated with TACE were enrolled. MRI examinations were performed before TACE, and the efficacy was evaluated according to the mRECIST criterion 3 months after TACE. A total of 396 radiomics features were extracted from T2-weighted pre-TACE images, and least absolute shrinkage and selection operator (LASSO) regression was applied to feature selection and model construction. The performance of the model was evaluated by receiver operating characteristic (ROC) curves, calibration curves, and decision curves. RESULTS: The AFP value, Child-Pugh score, and BCLC stage showed a significant difference between the TACE response (TR) and non-TACE response (nTR) patients. Six radiomics features were selected by LASSO and the radiomics score (Rad-score) was calculated as the sum of each feature multiplied by the non-zero coefficient from LASSO. The AUCs of the ROC curve based on Rad-score were 0.812 and 0.866 in the training and validation cohorts, respectively. To improve the diagnostic efficiency, the Rad-score was further integrated with the above clinical indicators to form a novel predictive nomogram. Results suggested that the AUC increased to 0.861 and 0.884 in the training and validation cohorts, respectively. Decision curve analysis showed that the radiomics nomogram was clinically useful. CONCLUSION: The radiomics and clinical indicator-based predictive nomogram can well predict TR in intermediate-advanced HCC and can further be applied for auxiliary diagnosis of clinical prognosis. KEY POINTS: • The therapeutic outcome of TACE varies greatly even for patients with the same clinicopathologic features. • Radiomics showed excellent performance in predicting the TACE response. • Decision curves demonstrated that the novel predictive model based on the radiomics signature and clinical indicators has great clinical utility.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Imageamento por Ressonância Magnética , Nomogramas , Estudos Retrospectivos
10.
Nanomedicine ; 32: 102342, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253922

RESUMO

Acute kidney injury (AKI) is a life-threatening disease without effective treatment. The utilization of curcumin (Cur) for the treatment of AKI is still facing challenges due to its poor water-solubility and low bioavailability. Herein, kidney-targeted octenyl succinic anhydride-grafted fucoidan loaded with Cur (OSA-Fucoidan/Cur) was fabricated for synergistic treatment of AKI. It was found that OSA-Fucoidan/Cur micelles had a sustained drug release behavior and excellent physicochemical stability. Cellular uptake studies demonstrated that the specific binding between fucoidan and P-selectin overexpressed on H2O2-stimulated HUVECs contributed to the higher internalization of OSA-Fucoidan/Cur micelles by the cells. In addition, OSA-Fucoidan micelles exhibited an ideal kidney-targeted characteristic in lipopolysaccharide (LPS)-induced AKI mice. In vivo studies showed that the combination of Cur and OSA-Fucoidan endowed the OSA-Fucoidan/Cur micelles with synergistically anti-inflammatory and antioxidant abilities, thereby largely enhancing the therapeutic efficacy of AKI. Therefore, OSA-Fucoidan/Cur micelles may represent a potential kidney-targeted nanomedicine for effective treatment of AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Portadores de Fármacos/química , Micelas , Selectina-P/antagonistas & inibidores , Polissacarídeos/química , Injúria Renal Aguda/patologia , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Meia-Vida , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos ICR , Anidridos Succínicos/química , Distribuição Tecidual/efeitos dos fármacos
11.
Cell Commun Signal ; 18(1): 165, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092596

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

12.
Cell Commun Signal ; 18(1): 97, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576292

RESUMO

BACKGROUND: Cancer cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Increased aerobic glycolysis supports cancer cell survival and rapid proliferation and predicts a poor prognosis in cancer patients. METHODS: Molecular profiles from The Cancer Genome Atlas (TCGA) cohort were used to analyze the prognostic value of glycolysis gene signature in human cancers. Gain- and loss-of-function studies were performed to key drivers implicated in hepatocellular carcinoma (HCC) glycolysis. The molecular mechanisms underlying Osteopontin (OPN)-mediated glycolysis were investigated by real-time qPCR, western blotting, immunohistochemistry, luciferase reporter assay, and xenograft and diethyl-nitrosamine (DEN)-induced HCC mouse models. RESULTS: Increased glycolysis predicts adverse clinical outcome in many types of human cancers, especially HCC. Then, we identified a handful of differentially expressed genes related to HCC glycolysis. Gain- and loss-of-function studies showed that OPN promotes, while SPP2, LECT2, SLC10A1, CYP3A4, HSD17B13, and IYD inhibit HCC cell glycolysis as revealed by glucose utilization, lactate production, and extracellular acidification ratio. These glycolysis-related genes exhibited significant tumor-promoting or tumor suppressive effect on HCC cells and these effects were glycolysis-dependent. Mechanistically, OPN enhanced HCC glycolysis by activating the αvß3-NF-κB signaling. Genetic or pharmacological blockade of OPN-αvß3 axis suppressed HCC glycolysis in xenograft tumor model and hepatocarcinogenesis induced by DEN. CONCLUSIONS: Our findings reveal crucial determinants for controlling the Warburg metabolism in HCC cells and provide a new insight into the oncogenic roles of OPN in HCC. Video Abstract.


Assuntos
Carcinoma Hepatocelular/genética , Glicólise/genética , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfaVbeta3/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Osteopontina/metabolismo , Prognóstico , Transdução de Sinais , Efeito Warburg em Oncologia
13.
Biochem Biophys Res Commun ; 453(3): 362-7, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25264192

RESUMO

Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which was detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1Gy) induced phosphorylation of DNA-PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA-PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA-PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA-PKcs-SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA-PKcs-SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA , Relação Dose-Resposta à Radiação , Ativação Enzimática , Camundongos , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Asian J Pharm Sci ; 19(2): 100905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595332

RESUMO

Chemotherapy plays a crucial role in triple-negative breast cancer (TNBC) treatment as it not only directly kills cancer cells but also induces immunogenic cell death. However, the chemotherapeutic efficacy was strongly restricted by the acidic and hypoxic tumor environment. Herein, we have successfully formulated PLGA-based nanoparticles concurrently loaded with doxorubicin (DOX), hemoglobin (Hb) and CaCO3 by a CaCO3-assisted emulsion method, aiming at the effective treatment of TNBC. We found that the obtained nanomedicine (DHCaNPs) exhibited effective drug encapsulation and pH-responsive drug release behavior. Moreover, DHCaNPs demonstrated robust capabilities in neutralizing protons and oxygen transport. Consequently, DHCaNPs could not only serve as oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment (TME) by depleting lactic acid, thereby effectively overcoming the resistance to chemotherapy. Furthermore, DHCaNPs demonstrated a notable ability to enhance antitumor immune responses by increasing the frequency of tumor-infiltrating effector lymphocytes and reducing the frequency of various immune-suppressive cells, therefore exhibiting a superior efficacy in suppressing tumor growth and metastasis when combined with anti-PD-L1 (αPD-L1) immunotherapy. In summary, this study highlights that DHCaNPs could effectively attenuate the acidic and hypoxic TME, offering a promising strategy to figure out an enhanced chemo-immunotherapy to benefit TNBC patients.

15.
ACS Nano ; 18(12): 8811-8826, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466366

RESUMO

Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pró-Proteína Convertase 9/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Neoplasias Hepáticas/tratamento farmacológico , Homeostase , Subtilisinas
16.
Technol Cancer Res Treat ; 22: 15330338231195494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650153

RESUMO

Background: Hypoxia is known to play a critical role in tumor occurrence, progression, prognosis, and therapy resistance. However, few studies have investigated hypoxia markers for diagnosing and predicting prognosis in colon adenocarcinoma (COAD). This study aims to identify a hypoxia genes-based biomarker for predicting COAD patients' prognosis and response to immunotherapy on an individual basis. Methods: Hypoxia-related genes were extracted from the Molecular Signatures Database. Gene expression, clinical data, and mutation data of COAD were collected retrospectively from the Cancer Genome Atlas, the Gene Expression Omnibus, and the International Cancer Genome Consortium databases. Univariate and multivariate cox regression, and the least absolute shrinkage and selection operator method were used to select the genes most associated with the prognosis of COAD patients. Kaplan-Meier survival analysis, receiver operating characteristic curves, calibration curves, and decision curve analyses were performed to validate the efficacy of the signature in predicting the prognosis of COAD patients. EdU incorporation assays, cell survival assays, western blot assays, and trans-well invasion assays were performed to further confirm the function of the screened genes in tumorigenesis. Results: ENO3 and KDM3A were identified as key genes for constructing prognostic and diagnostic signatures, which were found to be independent risk factors for predicting the prognosis and diagnosis of COAD patients. Using these signatures, COAD patients could be stratified into high-risk and low-risk groups, with the latter exhibiting better overall survival outcomes. Moreover, the high-risk group displayed elevated levels of immune checkpoint genes and tumor mutation burden, indicating that these patients may benefit from immune checkpoint inhibitor therapy. Conclusion: The signature developed in this study demonstrates excellent efficacy in prognosticating the outcomes of COAD patients. Moreover, it can serve as a valuable tool for clinicians to identify COAD patients who are suitable for ICI therapy.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Estudos Retrospectivos , Prognóstico , Hipóxia , Microambiente Tumoral/genética , Histona Desmetilases com o Domínio Jumonji
17.
Biomater Sci ; 11(18): 6109-6115, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37591802

RESUMO

The field of biomaterials has experienced substantial evolution in recent years, driven by advancements in materials science and engineering. This has led to an expansion of the biomaterials definition to include biocompatibility, bioactivity, bioderived materials, and biological tissues. Consequently, the intended performance of biomaterials has shifted from a passive role wherein a biomaterial is merely accepted by the body to an active role wherein a biomaterial instructs its biological environment. In the future, the integration of bioinspired designs and dynamic behavior into fabrication technologies will revolutionize the field of biomaterials. This perspective presents the recent advances in the evolution of biomaterials in fabrication technologies and provides a brief insight into smart biomaterials.


Assuntos
Materiais Biocompatíveis , Engenharia
18.
Adv Sci (Weinh) ; 10(2): e2203973, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442849

RESUMO

Tumor-associated macrophages (TAMs) play an essential role in tumor progression, metastasis, and antitumor immunity. Ferroptosis has attracted extensive attention for its lethal effect on tumor cells, but the role of ferroptosis in TAMs and its impact on tumor progression have not been clearly defined. Using transgenic mouse models, this study determines that xCT-specific knockout in macrophages is sufficient to limit tumorigenicity and metastasis in the mouse HCC models, achieved by reducing TAM recruitment and infiltration, inhibiting M2-type polarization, and activating and enhancing ferroptosis activity within TAMs. The SOCS3-STAT6-PPAR-γ signaling may be a crucial pathway in macrophage phenotypic shifting, and activation of intracellular ferroptosis is associated with GPX4/RRM2 signaling regulation. Furthermore, that xCT-mediated macrophage ferroptosis significantly increases PD-L1 expression in macrophages and improves the antitumor efficacy of anti-PD-L1 therapy is unveiled. The constructed Man@pSiNPs-erastin specifically targets macrophage ferroptosis and protumoral polarization and combining this treatment with anti-PD-L1 exerts substantial antitumor efficacy. xCT expression in tumor tissues, especially in CD68+ macrophages, can serve as a reliable factor to predict the prognosis of HCC patients. These findings provide further insight into targeting ferroptosis activation in TAMs and regulating TAM infiltration and functional expression to achieve precise tumor prevention and improve therapeutic efficacy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Ativação de Macrófagos , Macrófagos Associados a Tumor , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Macrófagos Associados a Tumor/patologia , Polaridade Celular , Inibidores de Checkpoint Imunológico/uso terapêutico
19.
Insights Imaging ; 14(1): 38, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854872

RESUMO

OBJECTIVES: This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed to improve predictive performance. METHODS: The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor (KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning classifier deep neural network (DNN). RESULTS: DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951-0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735). CONCLUSIONS: DNN model performs better than other classifiers in predicting TACE response. Integrating with clinically significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit the most from TACE intervention.

20.
Eur J Pharmacol ; 940: 175465, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566915

RESUMO

Liver cancer is a kind of malignant tumor with poor sensitivity to chemotherapy. It is urgent to investigate approaches to improve the outcome of chemotherapy. KDM5A has been reported to be an oncogene in various cancers and is associated with drug resistance. However, the functions of KDM5A in chemotherapeutic sensitivity of liver cancer not been well illustrated. In this study, we found that KDM5A was upregulated in liver cancer tissue and cell lines. KDM5A knockdown using a gene interference strategy suppressed the growth of liver cancer in vitro and in vivo. CPI-455, a pharmacological inactivation of KDM5A enhanced the cytotoxicity of cisplatin (CDDP) in liver cells. CPI-455 and CDDP cotreatment resulted in apoptosis and mitochondrial dysfunction. We also found that knockdown or inactivation of KDM5A resulted in the downregulation of ROCK1, an oncogene regulating the activation of the PTEN/AKT signaling pathway. In particular, overexpression of ROCK1 or SF1670, a pharmacological inhibitor of PTEN, alleviated the cytotoxicity of CPI-455 and CDDP cotreatment. In HCCLM3 xenografts, CPI-455 and CDDP cotreatment dramatically inhibited the growth of xenograft tumor compared to CPI-455 or CDDP treatment alone. In conclusion, this study suggested that targeting the inactivation of KDM5A is an efficient strategy to enhance the chemosensitivity of liver cancer cells to CDDP by modulating the ROCK1/PTEN/AKT signaling pathway.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Transdução de Sinais , Apoptose , Neoplasias Hepáticas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Quinases Associadas a rho/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA