Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 42(17): e113415, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37485728

RESUMO

The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Estradiol , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Estradiol/farmacologia , Estradiol/metabolismo , Mutagênese Sítio-Dirigida
2.
Cell Rep ; 38(4): 110298, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081353

RESUMO

The reverse cholesterol transport pathway is responsible for the maintenance of human cholesterol homeostasis, an imbalance of which usually leads to atherosclerosis. As a key component of this pathway, the ATP-binding cassette transporter ABCG1 forwards cellular cholesterol to the extracellular acceptor nascent high-density lipoprotein (HDL). Here, we report a 3.26-Å cryo-electron microscopy structure of cholesterol-bound ABCG1 in an inward-facing conformation, which represents a turnover condition upon ATP binding. Structural analyses combined with functional assays reveals that a cluster of conserved hydrophobic residues, in addition to two sphingomyelins, constitute a well-defined cholesterol-binding cavity. The exit of this cavity is closed by three pairs of conserved Phe residues, which constitute a hydrophobic path for the release of cholesterol in an acceptor concentration-dependent manner. Overall, we propose an ABCG1-driven cholesterol transport cycle initiated by sphingomyelin-assisted cholesterol recruitment and accomplished by the release of cholesterol to HDL.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Colesterol/metabolismo , Microscopia Crioeletrônica , Humanos , Esfingomielinas/metabolismo
3.
Genome Biol ; 20(1): 7, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621757

RESUMO

BACKGROUND: Long intergenic RNAs (lincRNAs) play critical roles in eukaryotic cells, but systematic analyses of the lincRNAs of an animal for phenotypes are lacking. We generate CRISPR knockout strains for Caenorhabditis elegans lincRNAs and evaluate their phenotypes. RESULTS: C. elegans lincRNAs demonstrate global features such as shorter length and fewer exons than mRNAs. For the systematic evaluation of C. elegans lincRNAs, we produce CRISPR knockout strains for 155 of the total 170 C. elegans lincRNAs. Mutants of 23 lincRNAs show phenotypes in 6 analyzed traits. We investigate these lincRNAs by phenotype for their gene expression patterns and potential functional mechanisms. Some C. elegans lincRNAs play cis roles to modulate the expression of their neighboring genes, and several lincRNAs play trans roles as ceRNAs against microRNAs. We also examine the regulation of lincRNA expression by transcription factors, and we dissect the pathway by which two transcription factors, UNC-30 and UNC-55, together control the expression of linc-73. Furthermore, linc-73 possesses a cis function to modulate the expression of its neighboring kinesin gene unc-104 and thus plays roles in C. elegans locomotion. CONCLUSIONS: By using CRISPR/cas9 technology, we generate knockout strains of 155 C. elegans lincRNAs as valuable resources for studies in noncoding RNAs, and we provide biological insights for 23 lincRNAs with the phenotypes identified in this study.


Assuntos
Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Inativação de Genes , RNA Longo não Codificante , Animais , Locomoção , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA