Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Infect Dis ; 13: 117, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23497104

RESUMO

BACKGROUND: Children presenting to hospital with recent or current Plasmodium falciparum malaria are at increased the risk of invasive bacterial disease, largely enteric gram-negative organisms (ENGO), which is associated with increased mortality and recurrent morbidity. Although incompletely understood, the most likely source of EGNO is the bowel. We hypothesised that as a result of impaired gut-barrier function endotoxin (lipopolysaccharide), present in the cell-wall of EGNO and in substantial quantities in the gut, is translocated into the bloodstream, and contributes to the pathophysiology of children with severe malaria. METHODS: We conducted a prospective study in 257 children presenting with malaria to two hospitals in Kenya and Uganda. We analysed the clinical presentation, endotoxin and cytokine concentration. RESULTS: Endotoxaemia (endotoxin activity ≥0.4 EAA Units) was observed in 71 (27.6%) children but its presence was independent of both disease severity and outcome. Endotoxaemia was more frequent in children with severe anaemia but not specifically associated with other complications of malaria. Endotoxaemia was associated with a depressed inflammatory and anti-inflammatory cytokine response. Plasma endotoxin levels in severe malaria negatively correlated with IL6, IL10 and TGFß (Spearman rho: TNFα: r=-0.122, p=0.121; IL6: r=-0.330, p<0.0001; IL10: r=-0.461, p<0.0001; TGFß: r=-0.173, p<0.027). CONCLUSIONS: Endotoxaemia is common in malaria and results in temporary immune paralysis, similar to that observed in patients with sepsis and experimentally-induced endotoxaemia. Intense sequestration of P. falciparum-infected erythrocytes within the endothelial bed of the gut has been observed in pathological studies and may lead to gut-barrier dysfuction. The association of endotoxaemia with the anaemia phenotype implies that it may contribute to the dyserythropoesis accompanying malaria through inflammation. Both of these factors feasibly underpin the susceptibility to EGNO co-infection. Further research is required to investigate this initial finding, with a view to future treatment trials targeting mechanism and appropriate antimicrobial treatment.


Assuntos
Endotoxemia/microbiologia , Malária Falciparum/complicações , Pré-Escolar , Citocinas/sangue , Endotoxemia/epidemiologia , Endotoxinas/sangue , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Estudos Prospectivos , Estatísticas não Paramétricas , Uganda/epidemiologia
2.
EBioMedicine ; 1(1): 29-36, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25893206

RESUMO

BACKGROUND: Individually, the red blood cell (RBC) polymorphisms sickle cell trait (HbAS) and α+thalassemia protect against severe Plasmodium falciparum malaria. It has been shown through epidemiological studies that the co-inheritance of both conditions results in a loss of the protection afforded by each, but the biological mechanisms remain unknown. METHODS: We used RBCs from >300 donors of various HbAS and α+thalassemia genotype combinations to study the individual and combinatorial effects of these polymorphisms on a range of putative P. falciparum virulence phenotypes in-vitro, using four well-characterised P. falciparum laboratory strains. We studied cytoadhesion of parasitized RBCs (pRBCs) to the endothelial receptors CD36 and ICAM1, rosetting of pRBCs with uninfected RBCs, and pRBC surface expression of the parasite-derived adhesion molecule P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1). FINDINGS: We confirmed previous reports that HbAS pRBCs show reduced cytoadhesion, rosetting and PfEMP1 expression levels compared to normal pRBC controls. Furthermore, we found that co-inheritance of HbAS with α+thalassemia consistently reversed these effects, such that pRBCs of mixed genotype showed levels of cytoadhesion, rosetting and PfEMP1 expression indistinguishable from those seen in normal pRBCs. However, pRBCs with α+thalassemia alone showed parasite strain-specific effects on adhesion, and no consistent reduction in PfEMP1 expression. INTERPRETATION: Our data support the hypothesis that the negative epistasis between HbAS and α+thalassemia observed in epidemiological studies might be explained by host genotype-specific changes in the pRBC-adhesion properties that contribute to parasite sequestration and disease pathogenesis in vivo. The mechanism by which α+thalassemia on its own protects against severe malaria remains unresolved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA