Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(39): E8194-E8203, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28894006

RESUMO

Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid "membraneless organelles" that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, [Formula: see text], diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing [Formula: see text] to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of [Formula: see text] have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in [Formula: see text] are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in [Formula: see text] are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes.


Assuntos
RNA Helicases DEAD-box/química , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/química , Organelas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/química , Células Germinativas/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética
2.
J Biol Chem ; 290(38): 22862-78, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26149808

RESUMO

Deletion of Phe-508 (F508del) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) results in destabilization of the domain, intramolecular interactions involving the domain, and the entire channel. The destabilization caused by F508del manifests itself in defective channel processing and channel gating defects. Here, we present NMR studies of the effect of F508del and the I539T stabilizing mutation on NBD1 dynamics, with a view to understanding these changes in stability. Qualitatively, F508del NMR spectra exhibit significantly more peak broadening than WT spectra due to the enhanced intermediate time scale (millisecond to microsecond) motions in the mutant. Unexpectedly, studies of fast (nanosecond to picosecond) motions revealed that F508del NBD1 tumbles more rapidly in solution than WT NBD1. Whereas F508del tumbles at a rate nearly consistent with the monomeric state, the WT protein tumbles significantly more slowly. Paramagnetic relaxation enhancement experiments confirm that NBD1 homodimerizes in solution in the expected head-to-tail orientation. NMR spectra of WT NBD1 reveal significant concentration-dependent chemical shift perturbations consistent with NBD1 dimerization. Chemical shift analysis suggests that the more rapid tumbling of F508del is the result of an impaired ability to dimerize. Based on previously published crystal structures and NMR spectra of various NBD1 mutants, we propose that deletion of Phe-508 affects Q-loop conformational sampling in a manner that inhibits dimerization. These results provide a potential mechanism for inhibition of channel opening by F508del and support the dimer interface as a target for cystic fibrosis therapeutics.


Assuntos
Sequência de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Multimerização Proteica , Deleção de Sequência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Fenilalanina , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
J Biomol NMR ; 51(1-2): 71-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21947916

RESUMO

We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with (15)N R (1), R (1ρ ), and {(1)H}-(15)N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo "gating" motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ( ex ) contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns-ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.


Assuntos
Proteínas de Bactérias/química , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Thermus thermophilus/enzimologia , Sítios de Ligação , Domínio Catalítico , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
4.
Biophys Rev ; 7(2): 191-200, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28510170

RESUMO

Allosteric transmission of information between distant sites in biological macromolecules often involves collective transitions between active and inactive conformations. Nuclear magnetic resonance (NMR) spectroscopy can yield detailed information on these dynamics. In particular, relaxation dispersion techniques provide structural, dynamic, and mechanistic information on conformational transitions occurring on the millisecond to microsecond timescales. In this review, we provide an overview of the theory and analysis of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments and briefly describe their application to the study of allosteric dynamics in the homeodomain from the PBX transcription factor (PBX-HD). CPMG NMR data show that local folding (helix/coil) transitions in one part of PBX-HD help to communicate information between two distant binding sites. Furthermore, the combination of CPMG and other spin relaxation data show that this region can also undergo local misfolding, reminiscent of conformational ensemble models of allostery.

5.
PLoS One ; 8(9): e74347, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058550

RESUMO

Cystic fibrosis is caused by mutations in CFTR (cystic fibrosis transmembrane conductance regulator), leading to folding and processing defects and to chloride channel gating misfunction. CFTR is regulated by ATP binding to its cytoplasmic nucleotide-binding domains, NBD1 and NBD2, and by phosphorylation of the NBD1 regulatory insert (RI) and the regulatory extension (RE)/R region. These regulatory effects are transmitted to the rest of the channel via NBD interactions with intracellular domain coupling helices (CL), particularly CL4. Using a sensitive method for detecting inter-residue correlations between chemical shift changes in NMR spectra, an allosteric network was revealed within NBD1, with a construct lacking RI. The CL4-binding site couples to the RI-deletion site and the C-terminal residues of NBD1 that precede the R region in full-length CFTR. Titration of CL4 peptide into NBD1 perturbs the conformational ensemble in these sites with similar titration patterns observed in F508del, the major CF-causing mutant, and in suppressor mutants F494N, V510D and Q637R NBD1, as well as in a CL4-NBD1 fusion construct. Reciprocally, the C-terminal mutation, Q637R, perturbs dynamics in these three sites. This allosteric network suggests a mechanism synthesizing diverse regulatory NBD1 interactions and provides biophysical evidence for the allosteric coupling required for CFTR function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Nucleotídeos/metabolismo , Regulação Alostérica , Sítios de Ligação , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência , Relação Estrutura-Atividade , Titulometria
6.
J Phys Chem B ; 116(34): 10317-29, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22845760

RESUMO

NMR Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments represent a powerful approach for characterizing protein internal motions and for gaining insight into fundamental biological processes such as protein folding, catalysis, and allostery. In most cases, CPMG data are analyzed assuming that the protein exchanges between two different conformational states. Systems exchanging among more than two states are far more challenging to characterize by CPMG NMR. For example, in the case of three-state exchange in the fast time scale regime, it is difficult to uniquely connect the parameters extracted from CPMG analyses with the physical parameters of most interest, intercoversion rates, populations, and chemical shift differences for exchanging states. We have developed a grid search selection procedure that allows these physical parameters to be uniquely determined from CPMG data, based on additional information, which in this study comprises ligand-induced chemical shift perturbations. We applied this approach to the PBX homeodomain (PBX-HD), a three-helix protein with a C-terminal extension that folds into a fourth helix upon binding to DNA. We recently showed that the C-terminal extension transiently folds, even in the absence DNA, in a process that is likely tied to the cooperative binding of PBX-HD to DNA and other homeodomains. Using the grid search selection procedure, we found that PBX-HD undergoes exchange between three different conformational states, a major form in which the C-terminal extension is unfolded, the previously identified state in which the C-terminal extension forms a fourth helix, and an additional state in which the C-terminal extension is misfolded.


Assuntos
Proteínas de Homeodomínio/química , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Dobramento de Proteína
7.
J Mol Biol ; 405(3): 819-30, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21087615

RESUMO

The PBX1 homeodomain (PBX-HD) cooperatively binds DNA with Hox transcription factors and helps to regulate gene expression during vertebrate development. Allostery plays an important role in these interactions. DNA binding on one surface of PBX-HD enhances interactions with Hox proteins at a different interface. In addition, DNA binding causes a 15-residue extension at the C-terminus of PBX-HD to undergo a disorder-to-helix transition, although this region does not directly contact the DNA. Deletion of the C-terminal extension reduces both the DNA affinity of PBX-HD and the cooperativity of forming the DNA/Hox/PBX-HD ternary complex. To better understand the mechanism underlying these allosteric interactions, we used NMR relaxation dispersion dynamics experiments to characterize millisecond-timescale motions in PBX-HD over a range of temperatures. The data show that the C-terminal extension folds to form a fourth α-helix to a level of 5-10%, even in the absence of binding partners. This suggests that PBX-HD transiently preorganizes prior to binding DNA, reminiscent of the "conformational selection" model of molecular recognition. Folding of the C-terminal extension in the unbound protein is accompanied by structural rearrangements in both the DNA binding site and the Hox binding site, suggesting a possible role for these dynamics in the allosteric mechanism of PBX-HD.


Assuntos
Sítio Alostérico , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Homeodomínio/química , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Fator de Transcrição 1 de Leucemia de Células Pré-B , Conformação Proteica , Dobramento de Proteína
8.
Protein Sci ; 17(4): 644-51, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18305200

RESUMO

A critical step in the folding pathway of globular proteins is the formation of a tightly packed hydrophobic core. Several mutational studies have addressed the question of whether tight packing interactions are present during the rate-limiting step of folding. In some of these investigations, substituted side chains have been assumed to form native-like interactions in the transition state when the folding rates of mutant proteins correlate with their native-state stabilities. Alternatively, it has been argued that side chains participate in nonspecific hydrophobic collapse when the folding rates of mutant proteins correlate with side-chain hydrophobicity. In a reanalysis of published data, we have found that folding rates often correlate similarly well, or poorly, with both native-state stability and side-chain hydrophobicity, and it is therefore not possible to select an appropriate transition state model based on these one-parameter correlations. We show that this ambiguity can be resolved using a two-parameter model in which side chain burial and the formation of all other native-like interactions can occur asynchronously. Notably, the model agrees well with experimental data, even for positions where the one-parameter correlations are poor. We find that many side chains experience a previously unrecognized type of transition state environment in which specific, native-like interactions are formed, but hydrophobic burial dominates. Implications of these results to the design and analysis of protein folding studies are discussed.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína , Proteínas/química , Cinética , Modelos Moleculares , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Ribossômicas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA