Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurol Neurochir Pol ; 53(1): 8-17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30614516

RESUMO

INTRODUCTION: Due to its high complexity, neurosurgery consists of a demanding learning curve that requires intense training and a deep knowledge of neuroanatomy. Microsurgical skill development can be achieved through various models of simulation, but as human cadaveric models are not always accessible, cadaveric animal models can provide a reliable environment in which to enhance the acquisition of surgical dexterity. The aim of this review was to analyse the current role of animal brains in laboratory training and to assess their correspondence to the procedures performed in humans. MATERIAL AND METHODS: A Pubmed literature search was performed to identify all the articles concerning training cranial and spinal techniques on large animal heads. The search terms were 'training model', and 'neurosurgery' in association with 'animal', 'sheep', 'cow', and 'swine'. The exclusion criteria were articles that were on human brains, experimental fundamental research, or on virtual simulators. RESULTS: The search retrieved 119 articles, of which 25 were relevant to the purpose of this review. Owing to their similar neuroanatomy, bovine, porcine and ovine models prove to be reliable structures in simulating neurosurgical procedures. On bovine skulls, an interhemispheric transcalosal and retrosigmoid approach along with different approaches to the Circle of Willis can be recreated. Ovine model procedures have varied from lumbar discectomies on sheep spines to craniosynostosis surgery, whereas in ex vivo swine models, cadaveric dissections of lateral sulcus, median and posterior fossa have been achieved. CONCLUSIONS: Laboratory training models enhance surgical advancements by familiarising trainee surgeons with certain neuroanatomical structures and promoting greater surgical dexterity. The accessibility of animal brains allows trainee surgeons to exercise techniques outside the operating theatre, thus optimising outcomes in human surgical procedures.


Assuntos
Neurocirurgia , Crânio , Animais , Cadáver , Humanos , Procedimentos Neurocirúrgicos
2.
J Chem Phys ; 145(21): 214901, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799361

RESUMO

In this paper, we focus on the relaxation dynamics of Sierpinski hexagon fractal polymer. The relaxation dynamics of this fractal polymer is investigated in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type approach, by performing real-space renormalization transformations, we determine analytically the complete eigenvalue spectrum of the connectivity matrix. Based on the eigenvalues obtained through iterative algebraic relations we calculate the averaged monomer displacement and the mechanical relaxation moduli (storage modulus and loss modulus). The evaluation of the dynamical properties in the Rouse-type approach reveals that they obey scaling in the intermediate time/frequency domain. In the Zimm-type approach, which includes the hydrodynamic interactions, the relaxation quantities do not show scaling. The theoretical findings with respect to scaling in the intermediate domain of the relaxation quantities are well supported by experimental results.

3.
J Biomed Mater Res B Appl Biomater ; 108(3): 1129-1140, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31397056

RESUMO

In the present study, scaffolds based on alginate-pullulan-bioactive glass-ceramic with 0.5 and 1.5 mol % copper oxide were orthotopically implanted in experimental rat models to assess their ability to heal an induced bone defect. By implying magnetic resonance and imaging scans together with histological evaluation of the processed samples, a progressive healing of bone was observed within 5 weeks. Furthermore, as the regenerative process continued, new bone tissue was formed, enhancing the growth of irregular bone spicules around the scaffolds. A significantly higher amount of new bone was formed (37%) in the defect that received the composite with 1.5 mol % CuO (in glass-ceramic matrix) content implant. Nevertheless, the bone regeneration obtained by scaffold with 0.5 mol % CuO implanted is comparable with the alginate-pullulan-ß-tricalcium phosphate/hydroxiapatite composite implant. The assessed amount of new bone formed was found to be between 29.75 and 37.15% for all the composition involved in the present study. During this process a regeneration process was shown when the alginate-pullulan composite materials were involved, fact that indicate the great potential of these materials to be used in tissue engineering.


Assuntos
Alginatos/química , Regeneração Óssea , Cerâmica/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Substitutos Ósseos , Osso e Ossos , Durapatita , Eletroquímica , Técnicas In Vitro , Luminescência , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Varredura , Osteocalcina/química , Manejo da Dor , Polímeros/química , Ratos , Ratos Wistar
4.
Clujul Med ; 91(2): 176-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785155

RESUMO

BACKGROUND AND AIMS: The cerebellum ("little brain"), the largest part of hind brain, lies in the posterior cranial fossa, beneath the occipital lobe and dorsal to the brainstem. It develops over a long period: it is one of the first structures in the brain to begin to differentiate, but one of the last to mature. The use of ultrasonography has significantly improved the evaluation of fetal growth and development and has permitted prenatal diagnosis of a variety of congenital malformations.The aim of our study was to evaluate the cerebellar growth and development using 2 different measuring techniques: microMRI and ultrasound technique. The cerebellum measurements were related to gestational age. METHODS: We used 14 human fetuses corresponding to 15-28 gestational weeks, immersed in a 9% formalin solution. Magnetic Resonance Imaging (MRI) was performed by employing a Bruker BioSpec 70/16USR scanner (Bruker BioSpin MRI GmbH, Ettlingen, Germany), operated at 7.04 Tesla for cerebellar volume measurement. Ultrasonographic measurements of the cerebellum diameter were performed on 14 pregnant women, 15 - 28 gestational weeks. Ultrasound scan used 5-10 MHZ for transvaginal approach. Taking into consideration the values of the cerebellum dimensions and considering the general shape of the cerebellum as a transverse ellipsoid, the volume of the cerebellum was calculated by a mathematical formula for ellipsoid volume. RESULTS: The study correlates the measurements from the microMRI study with the ultrasounds data and the results are superposable. Both established the exponential volume growth after the 22-23 GW. We used the ellipsoid volume formula for the cerebellar volume using the half of the three diameters of the cerebellum determined by ultrasound measurements:Cerebellar Volume = Ellipsoid volume = 3/4 π r1 r2 r3. CONCLUSION: There is a linear correlation between the microMRI measurements and ultrasound determinations. Based on all collected data we could apply an easy formula to calculate the volume of cerebellum, a useful criterion in the evaluation of the cerebellar development and the appreciation of the gestational age.

5.
Clujul Med ; 89(1): 137-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004037

RESUMO

BACKGROUND AND AIMS: Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. METHODS: The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. RESULTS: The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. CONCLUSIONS: Magnetic resonance imaging offers 3D image datasets with more information than the conventional radiographic techniques. Due to its ability of imaging both hard and soft dental tissues, magnetic resonance imaging can be successfully used as a 3D diagnostic imaging technique in dentistry. When choosing the imaging method, dental clinicians should weight the benefit-risk ratio, taking into account the costs associated to magnetic resonance imaging and the harmful effects of ionizing radiations when cone beam computed tomography or conventional x-ray are used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA