Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398617

RESUMO

The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.


Assuntos
Polifenóis , Dermatopatias , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/química , Fenóis/farmacologia , Fenóis/uso terapêutico , Dermatopatias/tratamento farmacológico , Pele , Antioxidantes/química
2.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675650

RESUMO

Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.


Assuntos
Artrite Experimental , Proteína C-Reativa , Adjuvante de Freund , Interleucina-6 , Extratos Vegetais , Fator de Necrose Tumoral alfa , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/induzido quimicamente , Proteína C-Reativa/metabolismo , Interleucina-6/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Sapindaceae/química , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar
3.
Semin Cancer Biol ; 83: 543-555, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33276090

RESUMO

The non-enzymatic glycosylation or non-enzymatic covalent modifications (NECMs) or glycation of cellular proteins result in the generation and accumulation of advanced glycation end products (AGEs) that are associated with the epigenetics of cancer. Epigenetic modifications are inheritable changes without alterations in the sequences of DNA. Glycation-mediated epigenetic mechanisms change the accessibility of transcriptional factors to DNA via rearrangement or modification in the chromatin structure and collaborate with gene regulation in the pathogenesis of cancer. Epigenetic mechanisms play a critical role in sustaining the tissue-specific gene expression. Distraction from normal epigenetic mechanism results in alteration of gene function, initiation and progression of cancer, and cellular malignant transformation. Epigenetic modifications on DNA and histones control enzymatic expressions of corresponding metabolic pathways, which in turn influence epigenetic regulation. Glycation of histones due to persistent hyperglycemia results in histone-histone and histone-DNA cross-linking in chromatin by compromising the electrostatic interactions, that affect the dynamic architecture of chromatin. Histone proteins are highly prone to glycation due to their basic nature and long half-lives, but the exact role of histone glycation in the epigenetics of cancer is still in the veil. However, recent studies have suggested the role of histone glycation mediated epigenetic modifications that affect cellular functioning by altering the gene expressions of related metabolic pathways. Moreover, dicarbonyls-induced NECMs of histones perturb the architecture of chromatin and transcription of genes via multiple mechanisms. Contrary to the genetic causes of cancer, a possible reversal of glycation-mediated epigenetic modifications might open a new realm for therapeutic interventions. In this review, we have portrayed a mechanistic link between histone glycation and cancer epigenetics.


Assuntos
Epigênese Genética , Neoplasias , Transformação Celular Neoplásica/genética , Cromatina/genética , Metilação de DNA , Glicosilação , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
4.
Biodegradation ; 34(3): 235-252, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840891

RESUMO

Biogranulation has emerged as a viable alternative biological wastewater treatment approach because of its strong biodegradability potential, toxicity tolerance, and biomass retention features. However, this process requires a long duration for biogranules formation to occur. In this study, magnetic powder activated carbon (MPAC) was used as support material in a sequencing batch reactor to enhance biogranules development for wastewater treatment. Two parallel SBRs (designated R1 and R2) were used, with R1 serving as a control without the presence of MPAC while R2 was operated with MPAC. The biodegradability capacity and biomass properties of MPAC biogranules were compared with a control system. The measured diameter of biogranules for R1 and R2 after 8 weeks of maturation were 2.2 mm and 3.4 mm, respectively. The integrity coefficient of the biogranules in R2 was higher (8.3%) than that of R1 (13.4%), indicating that the addition of MPAC improved the structure of the biogranules in R2. The components of extracellular polymeric substances were also higher in R2 than in R1. Scanning electronic microscopy was able to examine the morphological structures of the biogranules which showed there were irregular formations compacted together. However, there were more cavities situated in R1 biogranules (without MPAC) when compared to R2 biogranules (with MPAC). Dye removal reached 65% and 83% in R1 and R2 in the post-development stage. This study demonstrates that the addition of MPAC could shorten and improve biogranules formation. MPAC acted as the support media for microbial growth during the biogranulation developmental process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Carvão Vegetal , Pós , Águas Residuárias , Reatores Biológicos
5.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838566

RESUMO

Moringa oleifera is rich in bioactive compounds such as beta-carotene, which have high nutritional values and antimicrobial applications. Several studies have confirmed that bioactive-compound-based herbal medicines extracted from the leaves, seeds, fruits and shoots of M. oleifera are vital to cure many diseases and infections, and for the healing of wounds. The ß-carotene is a naturally occurring bioactive compound encoded by zeta-carotene desaturase (ZDS) and phytoene synthase (PSY) genes. In the current study, computational analyses were performed to identify and characterize ZDS and PSY genes retrieved from Arabidopsis thaliana (as reference) and these were compared with the corresponding genes in M. oleifera, Brassica napus, Brassica rapa, Brassica oleracea and Bixa orellana. The BLAST results revealed that all the plant species considered in this study encode ß-carotene genes with 80-100% similarity. The Pfam analysis on ß-carotene genes of all the investigated plants confirmed that they belong to the same protein family and domain. Similarly, phylogenetic analysis revealed that ß-carotene genes of M. oleifera belong to the same ancestral class. Using the ZDS and PSY genes of Arabidopsis thaliana as a reference, we conducted qRT-PCR analysis on RNA extracted from the leaves of M. oleifera, Brassica napus, Brassica rapa and Bixa orellana. It was noted that the most significant gene expression occurred in the leaves of the studied medicinal plants. We concluded that not only are the leaves of M. oleifera an effective source of bioactive compounds including beta carotene, but also the leaves of Brassica napus, Brassica rapa and Bixa orellana can be employed as antibiotics and antioxidants against bacterial or microbial infections.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Moringa oleifera , Plantas Medicinais , beta Caroteno , Moringa oleifera/genética , Arabidopsis/genética , Filogenia , Brassica napus/genética , Brassica rapa/genética , Plantas Medicinais/genética , Perfilação da Expressão Gênica , Extratos Vegetais , Folhas de Planta
6.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049690

RESUMO

Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.


Assuntos
Cobre , Isoflavonas , Cobre/farmacologia , Cobre/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Isoflavonas/farmacologia , Genisteína/farmacologia , Morte Celular , Glycine max/metabolismo , Polifenóis
7.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985431

RESUMO

Bioassay-guided isolation from Camellia sinensis (Theaceae) and Colchicum luteum (Liliaceae) utilizing an in vitro model of protease assay revealed colchicine (1) and caffeine (2) from chloroform fractions, respectively. Their structures were validated using spectral techniques. The purified compounds were further optimized with Gaussian software utilizing the B3LYP functional and 6-31G(d,p) basis set. The result files were utilized to determine several global reactivity characteristics to explain the diverse behavior of the compounds. Colchicine (1) showed a higher inhibition of protease activity (63.7 ± 0.5 %age with IC50 = 0.83 ± 0.07 mM), compared with caffeine (2) (39.2 ± 1.3 %age). In order to determine the type of inhibition, compound 1 was further studied, and, based on Lineweaver-Burk/Dixon plots and their secondary replots, it was depicted that compound 1 was a non-competitive inhibitor of this enzyme, with a Ki value of 0.690 ± 0.09 mM. To elucidate the theoretical features of protease inhibition, molecular docking studies were performed against serine protease (PDB #1S0Q), which demonstrated that compound 1 had a strong interaction with the different amino acid residues located on the active site of this understudied enzyme, with a high docking score of 16.2 kcal/mol.


Assuntos
Alcaloides , Camellia sinensis , Colchicum , Simulação de Acoplamento Molecular , Colchicum/química , Camellia sinensis/química , Peptídeo Hidrolases , Cafeína , Alcaloides/farmacologia , Endopeptidases , Colchicina , Bioensaio
8.
Int Wound J ; 20(5): 1609-1621, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36372913

RESUMO

Diabetic Foot in Primary and Tertiary (DEFINITE) Care is an inter-institutional and multi-disciplinary team (MDT) health systems innovation programme at a healthcare cluster in Singapore. We aim to achieve coordinated MDT care across primary and tertiary care for patients with diabetic foot ulcers (DFU), within our public healthcare cluster - an integrated network of seven primary care polyclinics and two acute care tertiary hospitals (1700-bed and 800-bed) with a total catchment population of 2.2 million residents. Results from prospective DEFINITE Care is referenced against a retrospective 2013-2017 cohort, which was previously published. Cardiovascular profile of the study population is compared against the same population's profile in the preceding 12 months. Between June 2020 and December 2021, there were 3475 unique patients with DFU with mean age at 65.9 years, 61.2% male, mean baseline HbA1c at 8.3% with mean diabetes duration at 13.3 years, mean diabetes complication severity index (DCSI) at 5.6 and mean Charlson Comorbidity Index (CCI) at 6.8. In the 12-months preceding enrolment to DEFINITE Care, 35.5% had surgical foot debridement, 21.2% had minor lower extremity amputation (LEA), 7.5% had major LEA whilst 16.8% had revascularisation procedures. At 18-months after the implementation of DEFINITE Care programme, the absolute minor and major amputation rates were 8.7% (n = 302) and 5.1% (n = 176), respectively, equating to a minor and major LEA per 100000 population at 13.7 and 8.0, respectively. This represents an 80% reduction in minor amputation rates (P < .001) and a 35% reduction in major amputation rates (P = .005) when referenced against a retrospective 2013-2017 cohort, which had minor and major LEA per 100000 population at 68.9 and 12.4, respectively. As compared to the preceding 12 months, there was also a significant improvement in cardiovascular profile (glycemic and lipid control) within the DEFINITE population, with improved mean HbAc1 (7.9% from 8.4%, P < .001), low-density lipoprotein (LDL) levels (2.1 mmol/L from 2.2, P < .001), total cholesterol (3.9 mmol/L from 4.1, P < .001) and triglycerides levels (1.6 mmol/L from 1.8, P = .002). Multivariate analysis revealed a history of minor amputation in the preceding 12 months to be an independent predictor for major and minor amputation within the study period of 18 months (Hazard Ratio 3.4 and 1.8, respectively, P < .001). In conclusion, within DEFINITE care, 18-month data showed a significant reduction of minor and major LEA rates, with improved medical optimisation and cardiovascular profile within the study population.


Assuntos
Diabetes Mellitus , Pé Diabético , Idoso , Feminino , Humanos , Masculino , Estudos de Coortes , Pé Diabético/cirurgia , Serviços de Saúde , Estudos Prospectivos , Estudos Retrospectivos , Atenção Terciária à Saúde
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142616

RESUMO

Green tea's (Camellia sinensis) anticancer and anti-inflammatory effects are well-known. Catechins are the most effective antioxidants among the physiologically active compounds found in Camellia sinesis. Recent research demonstrates that the number of hydroxyl groups and the presence of specific structural groups have a substantial impact on the antioxidant activity of catechins. Unfermented green tea is the finest source of these chemicals. Catechins have the ability to effectively neutralize reactive oxygen species. The catechin derivatives of green tea include epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG). EGCG has the greatest anti-inflammatory and anticancer potential. Notably, catechins in green tea have been explored for their ability to prevent a variety of cancers. Literature evidence, based on epidemiological and laboratory studies, indicates that green tea catechins have certain properties that can serve as the basis for their consideration as lead molecules in the synthesis of novel anticancer drugs and for further exploration of their role as pharmacologically active natural adjuvants to standard chemotherapeutics. The various sections of the article will focus on how catechins affect the survival, proliferation, invasion, angiogenesis, and metastasis of tumors by modulating cellular pathways.


Assuntos
Catequina , Neoplasias , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Espécies Reativas de Oxigênio , Chá/química
10.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209073

RESUMO

Bacteria expressing New Delhi metallo-ß-lactamase-1 (NDM-1) can hydrolyze ß-lactam antibiotics (penicillins, cephalosporins, and carbapenems) and, thus, mediate multidrug resistance. The worldwide dissemination of NDM-1 poses a serious threat to public health, imposing a huge economic burden in the development of new antibiotics. Thus, there is an urgent need for the identification of novel NDM-1 inhibitors from a pool of already-known drug molecules. Here, we screened a library of FDA-approved drugs to identify novel non-ß-lactam ring-containing inhibitors of NDM-1 by applying computational as well as in vitro experimental approaches. Different steps of high-throughput virtual screening, molecular docking, molecular dynamics simulation, and enzyme kinetics were performed to identify risedronate and methotrexate as the inhibitors with the most potential. The molecular mechanics/generalized Born surface area (MM/GBSA) and molecular dynamics (MD) simulations showed that both of the compounds (risedronate and methotrexate) formed a stable complex with NDM-1. Furthermore, analyses of the binding pose revealed that risedronate formed two hydrogen bonds and three electrostatic interactions with the catalytic residues of NDM-1. Similarly, methotrexate formed four hydrogen bonds and one electrostatic interaction with NDM-1's active site residues. The docking scores of risedronate and methotrexate for NDM-1 were -10.543 kcal mol-1 and -10.189 kcal mol-1, respectively. Steady-state enzyme kinetics in the presence of risedronate and methotrexate showed a decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics, owing to poor catalytic proficiency and affinity. The results were further validated by determining the MICs of imipenem and meropenem in the presence of risedronate and methotrexate. The IC50 values of the identified inhibitors were in the micromolar range. The findings of this study should be helpful in further characterizing the potential of risedronate and methotrexate to treat bacterial infections.


Assuntos
Reposicionamento de Medicamentos , Metotrexato/química , Metotrexato/farmacologia , Ácido Risedrônico/química , Ácido Risedrônico/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Algoritmos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Curva ROC , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
11.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364236

RESUMO

Turmeric spice contains curcuminoids, which are polyphenolic compounds found in the Curcuma longa plant's rhizome. This class of molecules includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Using prostate cancer cell lines PC3, LNCaP, DU145, and C42B, we show that curcuminoids inhibit cell proliferation (measured by MTT assay) and induce apoptosis-like cell death (measured by DNA/histone ELISA). A copper chelator (neocuproine) and reactive oxygen species scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide) significantly inhibit this reaction, thus demonstrating that intracellular copper reacts with curcuminoids in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitize normal breast epithelial cells (MCF-10A) to curcumin-mediated growth inhibition, as determined by decreased cell proliferation. Copper supplementation results in increased expression of copper transporters CTR1 and ATP7A in MCF-10A cells, which is attenuated by the addition of curcumin in the medium. We propose that the copper-mediated, ROS-induced mechanism of selective cell death of cancer cells may in part explain the anticancer effects of curcuminoids.


Assuntos
Curcumina , Neoplasias , Masculino , Humanos , Cobre/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Curcuma/metabolismo , Diarileptanoides/farmacologia , Apoptose , Oxirredução , Peróxido de Hidrogênio/farmacologia , Genômica , Neoplasias/tratamento farmacológico
12.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144666

RESUMO

New Delhi metallo-ß-lactamase-1 (NDM-1), expressed in different Gram-negative bacteria, is a versatile enzyme capable of hydrolyzing ß-lactam rings containing antibiotics such as penicillins, cephalosporins, and even carbapenems. Multidrug resistance in bacteria mediated by NDM-1 is an emerging threat to the public health, with an enormous economic burden. There is a scarcity in the availability of specific NDM-1 inhibitors, and also a lag in the development of new inhibitors in pharmaceutical industries. In order to identify novel inhibitors of NDM-1, we screened a library of more than 20 million compounds, available at the MCULE purchasable database. Virtual screening led to the identification of six potential inhibitors, namely, MCULE-1996250788-0-2, MCULE-8777613195-0-12, MCULE-2896881895-0-14, MCULE-5843881524-0-3, MCULE-4937132985-0-1, and MCULE-7157846117-0-1. Furthermore, analyses by molecular docking and ADME properties showed that MCULE-8777613195-0-12 was the most suitable inhibitor against NDM-1. An analysis of the binding pose revealed that MCULE-8777613195-0-12 formed four hydrogen bonds with the catalytic residues of NDM-1 (His120, His122, His189, and Cys208) and interacted with other key residues. Molecular dynamics simulation and principal component analysis confirmed the stability of the NDM-1 and MCULE-8777613195-0-12 complex. The in vitro enzyme kinetics showed that the catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics decreased significantly in the presence of MCULE-8777613195-0-12, due to poor catalytic proficiency (kcat) and affinity (Km). The IC50 value of MCULE-8777613195-0-12 (54.2 µM) was comparable to that of a known inhibitor, i.e., D-captopril (10.3 µM). In sum, MCULE-8777613195-0-12 may serve as a scaffold to further design/develop more potent inhibitors of NDM-1 and other ß-lactamases.


Assuntos
Captopril , beta-Lactamases , Antibacterianos/química , Carbapenêmicos/farmacologia , Cefalosporinas , Humanos , Simulação de Acoplamento Molecular , Penicilinas , beta-Lactamases/química , beta-Lactamas
13.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144671

RESUMO

This study was designed to check the potential of secondary metabolites of the selected plants; Citrullus colocynthis, Solanum nigrum, Solanum surattense, Calotropis procera, Agave americana, and Anagallis arvensis for antioxidant, antibacterial, antifungal, and antidiabetic agents. Plant material was soaked in ethanol/methanol to get the crude extract, which was further partitioned via solvent extraction technique. GCMS and FTIR analytical techniques were applied to check the compounds responsible for causing antioxidant, antimicrobial, and antidiabetic activities. It was concluded that about 80% of studied extracts/fractions were active against α-amylase, ranging from 43 to 96%. The highest activity (96.63%) was exhibited by butanol fractions of A. arvensis while the least response (43.65%) was shown by the aqueous fraction of C. colocynthis and the methanol fraction of fruit of S. surattense. The highest antioxidant activity was shown by the ethyl acetate fraction of Anagallis arvensis (78.1%), while aqueous as well as n-hexane fractions are the least active throughout the assay. Results showed that all tested plants can be an excellent source of natural products with potential antimicrobial, antioxidant, and antidiabetic potential. The biological response of these species is depicted as a good therapeutic agent, and, in the future, it can be encapsulated for drug discovery.


Assuntos
Anti-Infecciosos , Antioxidantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos , Antioxidantes/farmacologia , Butanóis , Etanol , Hipoglicemiantes/farmacologia , Metanol , Extratos Vegetais/farmacologia , Solventes , alfa-Amilases
14.
Med Res Rev ; 40(6): 2089-2113, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32474970

RESUMO

Autophagy is a highly conserved intracellular degradation process that plays a crucial role in cell survival and stress reactions as well as in cancer development and metastasis. Autophagy process involves several steps including sequestration, fusion of autophagosomes with lysosomes and degradation. Forkhead box O (FOXO) transcription factors regulate the expression of genes involved in cellular metabolic activity and signaling pathways of cancer growth and metastasis. Recent evidence suggests that FOXO proteins are also involved in autophagy regulation. The relationship among FOXOs, autophagy, and cancer has been drawing attention of many who work in the field. This study summarizes the role of FOXO proteins and autophagy in cancer growth and metastasis and analyzes their potential roles in cancer disease management.


Assuntos
Autofagia , Neoplasias , Fatores de Transcrição Forkhead/metabolismo , Humanos , Lisossomos/metabolismo , Transdução de Sinais
15.
Adv Exp Med Biol ; 1152: 229-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456186

RESUMO

A large proportion of breast cancer patients are estrogen receptor positive. They generally benefit from tamoxifen, the drug that targets estrogen receptor signaling. However, de novo and acquired resistance against tamoxifen is well known. A number of signaling pathways and de-regulated factors have been evaluated to better understand the mechanism(s) of tamoxifen resistance. For past several years, non-coding RNAs have also gained attention as the putative regulators and determinants of tamoxifen resistance. A number of reports have documented evidence from in vitro and/or in vivo studies, as well as from evaluation of clinical samples, to showcase the power of non-coding RNAs as mediators of tamoxifen resistance and the predictors of disease relapse. This article puts into perspective the available information on microRNAs and the long non-coding RNAs regarding their ability to tweak resistance vs. sensitivity to tamoxifen.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos
16.
Int J Mol Sci ; 20(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781783

RESUMO

Garcinol, a dietary factor obtained from Garcinia indica, modulates several key cellular signaling pathways as well as the expression of miRNAs. Acquired resistance to standard therapies, such as erlotinib and cisplatin, is a hallmark of non-small cell lung cancer (NSCLC) cells that often involves miRNA-regulated epithelial-to-mesenchymal transition (EMT). We used A549 cells that were exposed to transforming growth factor beta 1 (TGF-ß1), resulting in A549M cells with mesenchymal and drug resistant phenotype, and report that garcinol sensitized resistant cells with mesenchymal phenotype to erlotinib as well as cisplatin with significant decrease in their IC50 values. It also potentiated the apoptosis-inducing activity of erlotinib in A549M and the endogenously mesenchymal H1299 NSCLC cells. Further, garcinol significantly upregulated several key EMT-regulating miRNAs, such as miR-200b, miR-205, miR-218, and let-7c. Antagonizing miRNAs, through anti-miRNA transfections, attenuated the EMT-modulating activity of garcinol, as determined by mRNA expression of EMT markers, E-cadherin, vimentin, and Zinc Finger E-Box Binding Homeobox 1 (ZEB1). This further led to repression of erlotinib as well as cisplatin sensitization, thus establishing the mechanistic role of miRNAs, particularly miR-200c and let-7c, in garcinol-mediated reversal of EMT and the resulting sensitization of NSCLC cells to standard therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Terpenos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/metabolismo , Terpenos/química , Terpenos/uso terapêutico , Fator de Crescimento Transformador beta1/farmacologia
17.
Apoptosis ; 21(9): 997-1007, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343126

RESUMO

Calcitriol is the metabolically active form of Vitamin D and is known to kill cancer cells. Using the rat model of DEN induced hepatocellular carcinoma we show that there is a marked increase in cellular levels of copper in hepatocellular carcinoma and that calcitriol-copper interaction leads to reactive oxygen species mediated DNA breakage selectively in hepatocellular carcinoma cells. In vivo studies show that calcitriol selectively induces severe fluctuations in cellular enzymatic and non enzymatic scavengers of reactive oxygen species in the malignant tissue. Lipid peroxidation, a well established marker of oxidative stress, was found to increase, and substantial cellular DNA breakage was observed. We propose that calcitriol is a proxidant in the cellular milieu of hepatocellular carcinoma cells, and this copper mediated prooxidant action of calcitriol causes selective DNA breakage in malignant cells, while sparing normal (non malignant) cells.


Assuntos
Antioxidantes/metabolismo , Calcitriol/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cobre/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/fisiopatologia , Dano ao DNA , Humanos , Peroxidação de Lipídeos , Neoplasias Hepáticas/fisiopatologia , Masculino , Estresse Oxidativo , Ratos
18.
Int J Mol Sci ; 18(1)2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28035959

RESUMO

Epidemiological as well as experimental evidence exists in support of chemopreventive and anticancer properties of green tea and its constituents. The gallocatechin, epicatechin-3-gallate is a major polyphenol present in green tea, shown responsible for these effects. Plant-derived polyphenolic compounds are established natural antioxidants which are capable of catalyzing oxidative DNA degradation of cellular DNA, alone as well as in the presence of transition metal ions, such as copper. Here we present evidence to support that, similar to various other polyphenoic compounds, epicatechin-3-gallate also causes oxidative degradation of cellular DNA. Single cell alkaline gel electrophoresis (Comet assay) was used to assess DNA breakage in lymphocytes that were exposed to various concentrations of epicatechin-3-gallate. Inhibition of DNA breakage in the presence of scavengers of reactive oxygen species (ROS) suggested involvement of ROS generation. Addition of neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation, dose-dependently, in intact lymphocytes. In contrast, bathocuproine, which does not permeate cell membrane, was observed to be ineffective. We further show that epicatechin-3-gallate degrades DNA in cell nuclei, which can also be inhibited by neocuproine, suggesting mobilization of nuclear copper in this reaction as well. Our results are indicative of ROS generation, possibly through mobilization of endogenous copper ions, and support our long-standing hypothesis of a prooxidant activity of plant-derived polyphenols as a mechanism for their documented anticancer properties.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catequina/análogos & derivados , Cobre/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Catequina/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chá/química
19.
IUBMB Life ; 67(12): 897-913, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26597014

RESUMO

Advanced glycation end products (AGEs) are a cohort of heterogeneous compounds that are formed after the nonenzymatic glycation of proteins, lipids and nucleic acids. Accumulation of AGEs in the body is implicated in various pathophysiological conditions like diabetes, cardiovascular diseases and atherosclerosis. Numerous studies have reported the connecting link between AGEs and the various complications associated with diseases. Hence, detection and measurement of AGEs becomes centrally important to understand and manage the menace created by AGEs inside the body. In recent years, an increasing number of immunotechniques as well as bioanalytical techniques have been developed to efficiently measure the levels of AGEs, but most of them are still far away from being clinically consistent, as relative disparity and ambiguity masks their standardization. This article is designed to critically review the recent advances and the emerging techniques for detection of AGEs. It is an attempt to summarize the major techniques that exist currently for the detection of AGEs both qualitatively and quantitatively. This review primarily focuses on the detection and quantification of AGEs which are formed in vivo. Immunochemical approach though costly but most effective and accurate method to measure the level of AGEs. Literature review suggests that detection of autoantibody targeting AGEs is a promising way that can be utilized for detection of AGEs. Future research efforts should be dedicated to develop this method in order to push forward the clinical applications of detection of AGEs.


Assuntos
Bioquímica/métodos , Produtos Finais de Glicação Avançada/análise , Imuno-Histoquímica/métodos , Animais , Autoanticorpos , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Eletroforese/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Produtos Finais de Glicação Avançada/imunologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Espectrometria de Massas/métodos , Camundongos , Espectrometria de Fluorescência/métodos
20.
Tumour Biol ; 36(11): 8861-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26069106

RESUMO

We have earlier elucidated a pathway for the anticancer action of plant polyphenolic compounds against malignant cells involving mobilisation of endogenous copper ions and the consequent prooxidant action. To further confirm our hypothesis in vivo, we induced hepatocellular carcinoma (HCC) in rats by diethylnitrosamine (DEN). We show that in such carcinoma cells, there is a progressive elevation in copper levels at various intervals after DEN administration. Concurrently with increasing copper levels, epigallocatechin-3-gallate (EGCG; a potent anticancer plant polyphenol found in green tea) mediated DNA breakage in malignant cells is also increased. The cell membrane permeable copper chelator neocuproine inhibited the EGCG-mediated cellular DNA degradation, whereas the membrane impermeable chelator bathocuproine was ineffective. Iron and zinc specific chelators desferoxamine mesylate and histidine, respectively, were also ineffective in inhibiting EGCG mediated DNA breakage. Through the use of specific scavengers, the mechanism of DNA breakage was determined to be mediated by reactive oxygen species. In summary, we provide an in vivo evidence of accumulating copper in hepatocellular carcinoma that is targeted by EGCG, leading to its anticancer role in a prooxidant manner. Our findings confirm a novel mechanism of anticancer activity of EGCG in particular and plant derived nutraceuticals in general.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Catequina/análogos & derivados , Cobre/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Catequina/administração & dosagem , Catequina/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Sequestradores de Radicais Livres/metabolismo , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/administração & dosagem , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA