Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Rev ; 122(1): 340-384, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34705429

RESUMO

Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.


Assuntos
Nanomedicina , Nanopartículas , Química Click/métodos , Nanopartículas/química
2.
Anal Bioanal Chem ; 414(1): 265-276, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33230699

RESUMO

This study reports the development of a sensitive magnetic bead-based enzyme-linked immunoassay (MELISA) for the pan-reactive detection of the Influenza A virus. The assay combines immunomagnetic beads and biotin-nanoparticle-based detection to quantify a highly conserved viral nucleoprotein in virus lysates. At the capture step, monoclonal antibody-coated magnetic microbeads were used to bind and concentrate the nucleoprotein in samples. The colorimetric detection signal was amplified using biotinylated silica nanoparticles (NP). These nanoparticles were functionalized on the surface with short DNA spacers bearing biotin groups by an automated supported synthesis method performed on nano-on-micro assemblies with a DNA/RNA synthesizer. A biotin-nanoparticle and immunomagnetic bead-based assay was developed. We succeeded in detecting Influenza A viruses directly in the lysis buffer supplemented with 10% saliva to simulate the clinical context. The biotin-nanoparticle amplification step enabled detection limits as low as 3 × 103 PFU mL-1 and 4 × 104 PFU mL-1 to be achieved for the H1N1 and H3N2 strains respectively. In contrast, a classical ELISA test based on the same antibody sandwich showed detection limit of 1.2 × 107 PFU mL-1 for H1N1. The new enhanced MELISA proved to be specific, as no cross-reactivity was found with a porcine respiratory virus (PRRSV). Graphical abstract.


Assuntos
Biotina/química , Separação Imunomagnética , Vírus da Influenza A/isolamento & purificação , Nanopartículas/química , Anticorpos Monoclonais , Sensibilidade e Especificidade
3.
Langmuir ; 37(26): 7975-7985, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170134

RESUMO

The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 µg mL-1.


Assuntos
Lipossomos , Ressonância de Plasmônio de Superfície , Decanoatos , Fosfolipídeos , Ramnose/análogos & derivados
4.
Transfusion ; 59(1): 277-286, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30430585

RESUMO

BACKGROUND: Despite current preventive strategies, bacterial contamination of platelets is the highest residual infectious risk in transfusion. Bacteria can grow from an initial concentration of 0.03-0.3 colony-forming units (CFUs)/mL up to 108 to 109 CFUs/mL over the product shelf life. The aim of this study was to develop a cost-effective approach for an early, rapid, sensitive, and generic detection of bacteria in platelet concentrates. STUDY DESIGN AND METHODS: A large panel of bacteria involved in transfusion reactions, including clinical isolates and reference strains, was established. Sampling was performed 24 hours after platelet spiking. After an optimized culture step for increasing bacterial growth, a microbead-based immunoassay allowed the generic detection of bacteria. Antibody production and immunoassay development took place exclusively with bacteria spiked in fresh platelet concentrates to improve the specificity of the test. RESULTS: Antibodies for the generic detection of either gram-negative or gram-positive bacteria were selected for the microbead-based immunoassay. Our approach, combining the improved culture step with the immunoassay, allowed sensitive detection of 1 to 10 CFUs/mL for gram-negative and 1 to 102 CFUs/mL for gram-positive species. CONCLUSION: In this study, a new approach combining bacterial culture with immunoassay was developed for the generic and sensitive detection of bacteria in platelet concentrates. This efficient and easily automatable approach allows tested platelets to be used on Day 2 after collection and could represent an alternative strategy for reducing the risk of transfusion-transmitted bacterial infections. This strategy could be adapted for the detection of bacteria in other cellular products.


Assuntos
Bactérias/isolamento & purificação , Plaquetas/microbiologia , Imunoensaio/métodos , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/isolamento & purificação , Anticorpos Monoclonais , Bactérias/imunologia , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Humanos , Klebsiella oxytoca/imunologia , Klebsiella oxytoca/isolamento & purificação , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/isolamento & purificação , Serratia marcescens/imunologia , Serratia marcescens/isolamento & purificação
5.
Analyst ; 143(10): 2293-2303, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29687126

RESUMO

A nanoparticle-based electrochemical sandwich immunoassay was developed for bacteria detection in platelet concentrates. For the assay, magnetic beads were functionalized with antibodies to allow the specific capture of bacteria from the complex matrix, and innovative methylene blue-DNA/nanoparticle assemblies provided the electrochemical response for amplified detection. This nanoparticular system was designed as a temperature-sensitive nano-tool for electrochemical detection. First, oligonucleotide-functionalized nanoparticles were obtained by direct synthesis of the DNA strands on the nanoparticle surface using an automated oligonucleotide synthesizer. Densely packed DNA coverage was thus obtained. Then, DNA duplexes were constructed on the NP surface with a complementary strand bearing a 3 methylene blue tag. This strategy ultimately produced highly functionalized nanoparticles with electrochemical markers. These assemblies enabled amplification of the electrochemical signal, resulting in a very good sensitivity. A proof-of-concept was carried out for E. coli detection in human platelet concentrates. Bacterial contamination of this complex biological matrix is the highest residual infectious risk in blood transfusion. The development of a rapid assay that could reach 10-102 CFU mL-1 sensitivity is a great challenge. The nanoparticle-based electrochemical sandwich immunoassay carried out on a boron doped diamond electrode proved to be sensitive for E. coli detection in human platelets. Two antibody pairs were used to develop either a generic assay against certain Gram negative strains or a specific assay for E. coli. The methylene blue-DNA/nanoparticles amplify sensitivity ×1000 compared with the assay run without NPs for electrochemical detection. A limit of detection of 10 CFU mL-1 in a biological matrix was achieved for E. coli using the highly specific antibody pair.


Assuntos
Plaquetas/microbiologia , DNA/química , Escherichia coli/isolamento & purificação , Imunoensaio , Azul de Metileno/química , Nanopartículas/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Dióxido de Silício
6.
Sensors (Basel) ; 18(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462870

RESUMO

Polydiacetylene (PDA) inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses) and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.


Assuntos
Técnicas Biossensoriais , Colorimetria , Polímero Poliacetilênico , Polímeros , Poli-Inos
7.
ACS Appl Mater Interfaces ; 16(23): 29645-29656, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809175

RESUMO

The cell-SELEX method enables efficient selection of aptamers that bind whole bacterial cells. However, after selection, it is difficult to determine their binding affinities using common screening methods because of the large size of the bacteria. Here we propose a simple surface plasmon resonance imaging method (SPRi) for aptamer characterization using bacterial membrane vesicles, called nanosomes, instead of whole cells. Nanosomes were obtained from membrane fragments after mechanical cell disruption in order to preserve the external surface epitopes of the bacterium used for their production. The study was conducted on Bacillus cereus (B. cereus), a Gram-positive bacterium commonly found in soil, rice, vegetables, and dairy products. Four aptamers and one negative control were initially grafted onto a biochip. The binding of B. cereus cells and nanosomes to immobilized aptamers was then compared. The use of nanosomes instead of cells provided a 30-fold amplification of the SPRi signal, thus allowing the selection of aptamers with higher affinities. Aptamer SP15 was found to be the most sensitive and selective for B. cereus ATCC14579 nanosomes. It was then truncated into three new sequences (SP15M, SP15S1, and SP15S2) to reduce its size while preserving the binding site. Fitting the results of the SPRi signal for B. cereus nanosomes showed a similar trend for SP15 and SP15M, and a slightly higher apparent association rate constant kon for SP15S2, which is the truncation with a high probability of a G-quadruplex structure. These observations were confirmed on nanosomes from B. cereus ATCC14579 grown in milk and from the clinical strain B. cereus J066. The developed method was validated using fluorescence microscopy on whole B. cereus cells and the SP15M aptamer labeled with a rhodamine. This study showed that nanosomes can successfully mimic the bacterial membrane with great potential for facilitating the screening of specific ligands for bacteria.


Assuntos
Aptâmeros de Nucleotídeos , Bacillus cereus , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/química , Técnica de Seleção de Aptâmeros
8.
Anal Chem ; 85(19): 9204-12, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24050654

RESUMO

The aim of this study was to develop versatile diagnostic tools based on the use of innovative polythiolated probes for the detection of multiple viruses. This approach is compatible with optical enzyme-linked oligosorbent assay (ELOSA) or electrochemical (biosensors) detection methods. The application targeted here concerns the rapid genotyping of Hepatitis C virus (HCV). HCV genotyping is one of the predictive parameters currently used to define the antiviral treatment strategy and is based on the sequencing of the viral NS5b region. Generic and specific NS5b amplicons were produced by real-time polymease chain reaction (RT-PCR) on HCV(+) human plasma. Original NS5b probes were designed for genotypes 1a/1b, 2a/2b/2c, 3a, and 4a/4d. Robust polythiolated probes were anchored with good efficacy on maleimide-activated microplates (MAM) and gold electrodes. Their grafting on MAM greatly increased the sensitivity of the ELOSA test which was able to detect HCV amplicons with good sensitivity (10 nM) and specificity. Moreover, the direct and real-time electrochemical detection by differential pulse voltammetry enabled a detection limit of 10 fM to be reached with good reproducibility. These innovative polythiolated probes have allowed us to envisage developing flexible, highly sensitive, and easy-to-handle platforms dedicated to the rapid screening and genotyping of a wide range of viral agents.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Hepacivirus/genética , Sondas de Oligonucleotídeos/química , Polímeros/química , Compostos de Sulfidrila/química , Genótipo , Humanos , Estrutura Molecular , Reação em Cadeia da Polimerase em Tempo Real
9.
Talanta ; 243: 123386, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35313133

RESUMO

Despite the tremendous interest for nanoparticles (NPs) in the biomedical field, their transfer to the clinics is still hampered, in particular due to the lack of knowledge of their behaviour in a biological environment. Indeed, the protein corona formed as soon as NPs enter the bloodstream can drastically affect their properties. The use of Taylor dispersion analysis-ICP-MS as an efficient technique dedicated to metal-containing NPs was proposed to examine these NP-protein interactions and determine protein corona thicknesses in biological fluids. This method was applied on core-shell gold/silica NPs in the presence of proteins at high concentrations and serum. Protein corona around 4 nm were measured. Moreover, the versatility of the method allowed assessing the reversible/irreversible character of the interactions.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Ouro , Nanopartículas/metabolismo , Proteínas , Dióxido de Silício
10.
Artigo em Inglês | MEDLINE | ID: mdl-35834580

RESUMO

A phospholipid-based liposome layer was used as an effective biomimetic membrane model to study the binding of the pH-dependent fusogenic peptide (E4-GGYC) from the influenza virus hemagglutinin HA2 subunit. To this end, a multiparameter surface plasmon resonance approach (MP-SPR) was used for monitoring peptide-liposome interactions at two pH values (4.5 and 8) by means of recording sensorgrams in real time without the need for labeling. Biotinylated liposomes were first immobilized as a monolayer onto the surface of an SPR gold chip coated with a streptavidin layer. Multiple sets of sensorgrams with different HA2 peptide concentrations were generated at both pHs. Dual-wavelength Fresnel layer modeling was applied to calculate the thickness (d) and the refractive index (n) of the liposome layer to monitor the change in its optical parameters upon interaction with the peptide. At acidic pH, the peptide, in its α helix form, entered the lipid bilayer of liposomes, inducing vesicle swelling and increasing membrane robustness. Conversely, a contraction of liposomes was observed at pH 8, associated with noninsertion of the peptide in the double layer of phospholipids. The equilibrium dissociation constant KD = 4.7 × 10-7 M of the peptide/liposome interaction at pH 4.5 was determined by fitting the "OneToOne" model to the experimental sensorgrams using Trace Drawer software. Our experimental approach showed that the HA2 peptide at a concentration up to 100 µM produced no disruption of liposomes at pH 4.5.

11.
Biosens Bioelectron ; 171: 112689, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080463

RESUMO

Paper-based DNA biosensors are powerful tools in point-of-care diagnostics since they are affordable, portable, user-friendly, rapid and robust. However, their sensitivity is not always as high as required to enable DNA quantification. To improve the response of standard dot blots, we have applied a new enhancement strategy that increases the sensitivity of assays based on the use of biotinylated silica-nanoparticles (biotin-Si-NPs). After immobilization of a genomic Campylobacter DNA onto a paper membrane, and addition of a biotinylated-DNA detection probe, hybridization was evidenced using streptavidin-conjugated to horseradish peroxidase (HRP) in the presence of luminol and H2O2. Replacement of the single biotin by the biotin-Si-NPs boosted on average a 30 fold chemiluminescent read-out of the biosensor. Characterization of biotin-Si-NPs onto a paper with immobilized DNA was done using a scanning electron microscope. A limit of detection of 3 pg/µL of DNA, similar to the available qPCR kits, is achieved, but it is cheaper, easier and avoids inhibition of DNA polymerase by molecules from the food matrices. We demonstrated that the new dot blot coupled to biotin-Si-NPs successfully detected Campylobacter from naturally contaminated chicken meat, without needing a PCR step. Hence, such an enhanced dot blot paves the path to the development of a portable and multiplex paper based platform for point-of-care screening of chicken carcasses for Campylobacter.


Assuntos
Técnicas Biossensoriais , Campylobacter , Carne , Nanopartículas , Animais , Campylobacter/genética , Galinhas , DNA , Contaminação de Alimentos , Peróxido de Hidrogênio , Dióxido de Silício
12.
Langmuir ; 26(7): 4941-50, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20000593

RESUMO

This article describes an original strategy to enable solid-phase oligodeoxyribonucleotide (ODN) synthesis on nanosized silica particles. It consists of the reversible immobilization of silica nanoparticles (NPs) on micrometric silica beads. The resulting assemblies, called nano-on-micro (NOM) systems, are well adapted to ODN synthesis in an automated instrument. First, NPs are derivatized with OH functions. For NOM assembly preparation, these functions react with the silanols of the microbeads under specific experimental conditions. Furthermore, OH groups allow ODN synthesis on the nanoparticles via phosphoramidite chemistry. The stability of the NOM assemblies during ODN solid-phase synthesis is confirmed by scanning and transmission electron microscopy (SEM and TEM, respectively), together with dynamic light scattering analyses. Then, the release of ODN-functionalized nanoparticles is performed under mild conditions (1% NH(4)OH in water, 1 h, 60 degrees C). Our technique provides silica nanoparticles well functionalized with oligonucleotides, as demonstrated by hybridization experiments conducted with the cDNA target.


Assuntos
Nanopartículas/química , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Nanopartículas/ultraestrutura , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Dióxido de Silício/química
13.
Materials (Basel) ; 12(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813395

RESUMO

Graphene-based materials are widely studied to enable significant improvements in electroanalytical devices requiring new generations of robust, sensitive and low-cost electrodes. In this paper, we present a direct one-step route to synthetize a functional nitrogen-doped graphene film onto a Ni-covered silicon electrode substrate heated at high temperature, by pulsed laser deposition of carbon in the presence of a surrounding nitrogen atmosphere, with no post-deposition transfer of the film. With the ferrocene methanol system, the functionalized electrode exhibits excellent reversibility, close to the theoretical value of 59 mV, and very high sensitivity to hydrogen peroxide oxidation. Our electroanalytical results were correlated with the composition and nanoarchitecture of the N-doped graphene film containing 1.75 at % of nitrogen and identified as a few-layer defected and textured graphene film containing a balanced mixture of graphitic-N and pyrrolic-N chemical functions. The absence of nitrogen dopant in the graphene film considerably degraded some electroanalytical performances. Heat treatment extended beyond the high temperature graphene synthesis did not significantly improve any of the performances. This work contributes to a better understanding of the electrochemical mechanisms of doped graphene-based electrodes obtained by a direct and controlled synthesis process.

14.
Chem Commun (Camb) ; 51(21): 4458-61, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25679473

RESUMO

We report the first synthesis of a methylene blue (MB) phosphoramidite derivative suitable for DNA solid-phase synthesis. The electrochemical and optical properties of the resulting MB modified oligonucleotides were confirmed. This new molecule is an important breakthrough in the design of new probes labelled with MB.


Assuntos
Azul de Metileno/química , Oligonucleotídeos/química , Compostos Organofosforados/química , Técnicas Eletroquímicas , Oligonucleotídeos/síntese química , Técnicas de Síntese em Fase Sólida
15.
Toxins (Basel) ; 7(9): 3540-53, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26371042

RESUMO

A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1), by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity.


Assuntos
Aflatoxina B1/análise , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Compostos de Anilina/análise , Compostos de Anilina/química , Ouro/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química
16.
Mater Sci Eng C Mater Biol Appl ; 38: 286-91, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24656380

RESUMO

In this work, using electrochemical impedance spectroscopy (EIS), we have, for the first time, label-free monitored protein immobilization on a gold surface through a strategy of electroaddressing, compatible with the production of microarrays for multi-detection. This functionalization is achieved via the alkyne/azide cycloaddition, better known as the "click" reaction. The electroaddressing was applied to a polythiol hexynyl derivative previously grafted onto the gold surface. This compound consists of two dithiol phosphate groups and a hexynyl function and was synthesized through a supported synthesis approach, from a dithiol reagent, phosphoramidite (DTPA), and a hexynyl phosphoramidite. Next, an azide-PEG3-biotin derivative was grafted onto the modified gold surface by electro-chronocoulometry. The "click" reaction was controlled by electrochemical impedance spectroscopy, showing the change in impedance only when the electroaddressing was performed at -300 mV. No effect on the EIS signal was observed when a positive potential was applied, confirming the specificity of the electroactivation. Biotin-modified electrodes were used to fix streptavidin and the immobilization was monitored using EIS. Fluorescent streptavidin-functionalized silica nanoparticles were also specifically grafted onto the biotinylated gold surface in order to confirm the "click" reaction using fluorescence microscopy. The obtained streptavidin platform was used to detect the surface coverage by biotinylated human serum albumin (HSA). The lowest detectable concentration is 10 pg/mL, and surface saturation is obtained with concentrations higher than 100 ng/mL.


Assuntos
Química Click/métodos , Eletroquímica/métodos , Ouro/química , Albumina Sérica/metabolismo , Coloração e Rotulagem , Biotina/metabolismo , Biotinilação , Calibragem , Espectroscopia Dielétrica , Eletrodos , Humanos , Microscopia de Fluorescência , Ácido Pentético/química , Ligação Proteica , Estreptavidina/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA