RESUMO
Anaerobic digestion is a highly effective and innovative method for treating organic waste while simultaneously generating energy. However, the treatment of the resulting digestate remains a challenging endeavor. To address this issue, poultry by-products digestate is used in this study to prepare biochars at two different pyrolysis temperatures (500/600 °C). Despite their potential, the utilization of untreated biochar is restricted due to its inadequate adsorption capacity. Therefore, each biochar was chemically activated using either HNO3 or KOH to synthesize four activated biochars (BC5@KOH, BC6@HNO3, BC5@HNO3, and BC6@HNO3). The aim is to investigate how the nature of chemical activation and pyrolysis temperature influence the adsorption of methylene blue dye. Characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), Raman analysis, and pHpzc determination, were exploited to comprehensively elucidate the structure and composition of both unprocessed and chemically activated biochars. Among the activated biochars, the adsorbent BC5@HNO3 exhibits the highest methylene blue (MB) adsorption capacity, reaching 101.72 mg.g-1 at 298 K under (pH = 2, ads dose = 0.6 g.L-1, shaking time of 20 min, as optimal conditions for MB adsorption. Adsorption data for each adsorbent strongly aligns with both the Langmuir isotherm model and the pseudo-second-order kinetic model. Moreover, the thermodynamic study reveals that the adsorption process was endothermic and spontaneous. The adsorption mechanism of MB dye was explored using various analytical techniques, including FTIR, SEM, PZC, and pH impact assessment. The findings suggest correlations with electrostatic interactions, hydrogen bonding, pore filling, as well as n-π and π-π interactions. Apparently, activated biochars play a crucial role in efficiently removing methylene blue dye, showcasing their potential as environmentally friendly and effective adsorbents.
Assuntos
Azul de Metileno , Poluentes Químicos da Água , Animais , Azul de Metileno/química , Aves Domésticas , Poluentes Químicos da Água/química , Carvão Vegetal/química , Termodinâmica , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de HidrogênioRESUMO
In the quest for sustainable waste management solutions, this study explores the integration of ultrasonic pretreatment as a preparatory step for the anaerobic digestion of landfill leachate. Employing response surface methodology (RSM) coupled with central composite design (CCD), we systematically optimize the process parameters, including pH, inoculum volume, and ultrasonic pretreatment duration, to maximize the yield of bio-methane potential (ml CH4/g VS). The results demonstrate the effective application of RSM-CCD for predicting and modelling methane generation, with a highly significant model (R2 = 0.899). The optimized conditions reveal a remarkable biomethane potential of 177 ml CH4/g VS. Additionally, this study contributes to the understanding of the positive effect of ultrasound pretreatment on the anaerobic digestion of landfill leachate, and the quality of the digestate obtained after anaerobic digestion was studied and different valorisations were proposed.
RESUMO
In this study, quartz sand (QS) incorporated into a crosslinked chitosan-glutaraldehyde matrix (QS@Ch-Glu) was prepared and employed as an efficient adsorbent for the elimination of Orange G (OG) dye from water. The sorption process is adequately described by the pseudo-second order kinetic model and the Langmuir isotherm model with maximum adsorption capacities of 172.65, 188.18, and 206.65mg/g at 25, 35, and 45°C, respectively. A statistical physics model was adopted to elucidate the adsorption mechanism of OG on QS@Ch-Glu. Calculated thermodynamic factors revealed that the adsorption of OG is endothermic, spontaneous, and occurs via physical interactions. Overall, the proposed adsorption mechanism was based on electrostatic attractions, n-π stacking interaction, hydrogen bonding interaction, and Yoshida hydrogen bonding. The adsorption rate of QS@Ch-Glu was still above 95% even after 6 cycles of adsorption and desorption. Furthermore, QS@Ch-Glu demonstrated high efficiency in real water samples. All these findings demonstrate that QS@Ch-Glu is qualified for practical applications.
Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Glutaral , Areia , Quartzo , Concentração de Íons de Hidrogênio , Termodinâmica , Água , CinéticaRESUMO
A facile chemical procedure was utilized to produce an effective peroxy-monosulfate (PMS) activator, namely ZnCo2O4/alginate. To enhance the degradation efficiency of Rhodamine B (RhB), a novel response surface methodology (RSM) based on the Box-Behnken Design (BBD) method was employed. Physical and chemical properties of each catalyst (ZnCo2O4 and ZnCo2O4/alginate) were characterized using several techniques, such as FTIR, TGA, XRD, SEM, and TEM. By employing BBD-RSM with a quadratic statistical model and ANOVA analysis, the optimal conditions for RhB decomposition were mathematically determined, based on four parameters including catalyst dose, PMS dose, RhB concentration, and reaction time. The optimal conditions were achieved at a PMS dose of 1 g l-1, a catalyst dose of 1 g l-1, a dye concentration of 25 mg l-1, and a time of 40 min, with a RhB decomposition efficacy of 98%. The ZnCo2O4/alginate catalyst displayed remarkable stability and reusability, as demonstrated by recycling tests. Additionally, quenching tests confirmed that SO4Ë-/OHË radicals played a crucial role in the RhB decomposition process.