Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-18, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028288

RESUMO

Thallium (Tl), a key element in high-tech industries, is recognized as a priority pollutant by the US EPA and EC. Tl accumulation threatens aquatic ecosystems. Despite its toxicity, little is known about its impact on cyanobacteria. This study explores the biochemical mechanisms of Tl(I) toxicity in cyanobacteria, focusing on physiology, metabolism, oxidative damage, and antioxidant responses. To this end, Anabaena and Nostoc were exposed to 400 µg/L, and 800 µg/L of Tl(I) over seven days. Anabaena showed superior Tl(I) accumulation with 7.8% removal at 400 µg/L and 9.5% at 800 µg/L, while Nostoc removed 2.2% and 7.4%, respectively. Tl(I) exposure significantly reduced the photosynthesis rate and function, more than in Nostoc. It also altered primary metabolism, increasing sugar levels and led to higher amino and fatty acids levels. While Tl(I) induced cellular damage in both species, Anabaena was less affected. Both species enhanced their antioxidant defense systems, with Anabaena showing a 175.6% increase in SOD levels under a high Tl(I) dose. This suggests that Anabaena's robust biosorption and antioxidant systems could be effective for Tl(I) removal. The study improves our understanding of Tl(I) toxicity, tolerance, and phycoremediation in cyanobacteria, aiding future bioremediation strategies.


This study presents novel insights into thallium (Tl) phycoremediation using Anabaena laxa and Nostoc muscorum, crucial for addressing the increasing contamination concerns stemming from high-tech industries. Elucidating the tolerance mechanisms and physiological responses of these cyanobacterial species to Tl(I) exposure. It highlights the potential of Anabaena laxa as an effective bio-remediator, offering a sustainable solution to mitigate Tl(I) environmental impact.

2.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513371

RESUMO

Microalgae have garnered scientific interest for their potential to produce bioactive compounds. However, the large-scale industrial utilization of microalgae faces challenges related to production costs and achieving optimal growth conditions. Thus, this study aimed to investigate the potential role of exogenous indole-3-acetic acid (IAA) application in improving the growth and production of bioactive metabolites in microalgae. To this end, the study employed different concentrations of exogenously administered IAA ranging from 0.36 µM to 5.69 µM to assess its influence on the growth and biochemical composition of Synechocystis and Chlorella. IAA exposure significantly increased IAA levels in both strains. Consequentially, improved biomass accumulation in parallel with increased total pigment content by approximately eleven-fold in both strains was observed. Furthermore, the application of IAA stimulated the accumulation of primary metabolites. Sugar levels were augmented, providing a carbon source that facilitated amino acid and fatty acid biosynthesis. As a result, amino acid levels were enhanced as well, leading to a 1.55-fold increase in total amino acid content in Synechocystis and a 1.42-fold increase in Chlorella. Total fatty acids content increased by 1.92-fold in Synechocystis and by 2.16-fold in Chlorella. Overall, the study demonstrated the effectiveness of exogenously adding IAA as a strategy for enhancing the accumulation of microalgae biomass and biomolecules. These findings contribute to the advancement of microalgae-based technologies, opening new avenues to produce economically important compounds derived from microalgae.


Assuntos
Chlorella , Microalgas , Synechocystis , Synechocystis/metabolismo , Ácidos Graxos/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Aminoácidos/metabolismo , Microalgas/metabolismo , Biomassa , Biocombustíveis
3.
Front Bioeng Biotechnol ; 11: 1161911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324419

RESUMO

The potential of microalgae to produce valuable compounds has garnered considerable attention. However, there are various challenges that hinder their large-scale industrial utilization, such as high production costs and the complexities associated with achieving optimal growth conditions. Therefore, we investigated the effects of glycine at different concentrations on the growth and bioactive compounds production of Synechocystis sp. PAK13 and Chlorella variabilis cultivated under nitrogen availability. Glycine supplementation resulted in increased biomass and bioactive primary metabolites accumulation in both species. Sugar production, particularly glucose content, significantly improved in Synechocystis at 3.33 mM glycine (1.4 mg/g). This led to enhanced organic acid, particularly malic acid, and amino acids production. Glycine stress also influenced the concentration of indole-3-acetic acid, which was significantly higher in both species compared to the control. Furthermore, fatty acids content increased by 2.5-fold in Synechocystis and by 1.36-fold in Chlorella. Overall, the exogenous application of glycine is a cheap, safe, and effective approach to enhancing sustainable microalgal biomass and bioproducts production.

4.
Front Microbiol ; 14: 1228869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680531

RESUMO

In the realm of applied phycology, algal physiology, and biochemistry publications, the absence of proper identification and documentation of microalgae is a common concern. This poses a significant challenge for non-specialists who struggle to identify numerous eukaryotic microalgae. However, a promising solution lies in employing an appropriate DNA barcoding technique and establishing comprehensive databases of reference sequences. To address this issue, we conducted a study focusing on the molecular characterization and strain identification of Tetraselmis and Chlorella species, utilizing the internal transcribed spacer (ITS) barcode approach. By analyzing the full nuclear ITS region through the Sanger sequencing approach, we obtained ITS barcodes that were subsequently compared with other ITS sequences of various Tetraselmis and Chlorella species. To ensure the reliability of our identification procedure, we conducted a meticulous comparison of the DNA alignment, constructed a phylogenetic tree, and determined the percentage of identical nucleotides. The findings of our study reveal the significant value of the ITS genomic region as a tool for distinguishing and identifying morphologically similar chlorophyta. Moreover, our results demonstrate that both the ITS1 and ITS2 regions are capable of effectively discriminating isolates from one another; however, ITS2 is preferred due to its greater intraspecific variation. These results underscore the indispensability of employing ITS barcoding in microalgae identification, highlighting the limitations of relying solely on morphological characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA