Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Macromol Rapid Commun ; : e2400345, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760014

RESUMO

The need for wound closure or surgical procedures has been commonly met by the application of sutures. Unfortunately, these are often invasive or subject to contamination. Alternative solutions are offered by surgical adhesives that can be applied and set without major disruption; a new class of supramolecular-based adhesives provides potential solutions to some of these challenges. In this study, a series of polymers utilizing dopamine as a self-assembling unit are synthesized. It is found that these motifs act as extremely effective adhesives, with control over the mechanical strength of the adhesion and materials' tensile properties enabled by changing monomer feed ratios and levels of cross-linking. These materials significantly outperform commercially available bio-adhesives, showing yield strengths after adhesion at least two times higher than that of BioGlue and Tisseel, as well as the ability to re-adhere with significant recovery of adhesion strength. Promisingly, the materials are shown to be non-cytotoxic, with cell viability > 90%, and able to perform in aqueous environments without significant loss in strength. Finally, the removal of the materials, is possible using benign organic solvents such as ethanol. These properties all demonstrate the effectiveness of the materials as potential bio-adhesives, with potential advantages for use in surgery.

2.
Chemistry ; 28(3): e202103443, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34595777

RESUMO

The number and type of new supramolecular polymer (SMP) systems have increased rapidly in recent years. Some of the key challenges faced for these novel systems include gaining full control over the mode of self-assembly, the creation of novel architectures and exploring functionality. Here, we provide a critical overview of approaches related to perylene-based SMPs and discuss progress to exert control over these potentially important SMPs through chemical modification of the imide substituents. Imide substitutions affect self-assembly behaviour orthogonally to the intrinsic optoelectronic properties of the perylene core, making for a valuable approach to tune SMP properties. Several recent approaches are therefore highlighted, with a focus on controlling 1) morphology, 2) H- or J- aggregation, and 3) mechanism of growth and degree of aggregation using thermodynamic and kinetic control. Areas of potential future exploration and application of these functional SMPs are also explored.

3.
Phys Chem Chem Phys ; 22(7): 4086-4095, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32031185

RESUMO

Light-responsive binary (azobenzene + solvent) lyotropic liquid crystals (LCs) were investigated by structural modification of simple azobenzene molecules. Three benzoic acid-containing azobenzene molecules 4-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO1), 3-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO2) and 5-(4-(hydroxyphenyl)diazenyl)isophthalic acid (AZO3) were produced with various amide substitutions to produce tectons with a variety of hydrophobicity, size and branching. The LC mesophases formed by binary (azobenzene + solvent) systems with low volatility solvents dimethylsulfoxide (DMSO) and N,N-dimethylformamide (DMF) as well as the protic ionic liquids ethylammonium formate (EAF) and propylammonium formate (PAF), were investigated using a combination of small-angle X-ray and neutron scattering (SAXS and SANS) as well as polarising light microscopy (PLM). Increasing alkyl group length was found to have a strong influence on LC phase spacing, and changes in the position of substitution on the benzene ring influenced the preferred curvature of phases. UV-induced trans to cis isomerization of the samples was shown to influence ordering and optical birefringence, indicating potential applications in optical devices.

4.
Chem Soc Rev ; 48(4): 989-1003, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30681685

RESUMO

Polymeric supra-amphiphiles are amphiphiles that are fabricated by linking polymeric segments, or small molecules and polymeric segments, by noncovalent interactions or dynamic covalent bonds. Compared with conventional amphiphilic polymers, polymeric supra-amphiphiles are advantageous in that they possess dynamic features and their preparation may be to some extent more facile. Moreover, polymeric supra-amphiphiles are endowed with richer structure and higher stability compared with small-molecule supra-amphiphiles. Owing to these properties, polymeric supra-amphiphiles have so far shown great promise as surfactants, nanocarriers and in therapies. In this tutorial review, recent work on polymeric supra-amphiphiles, from molecular architectures to functional assemblies, is presented and summarized. Different polymeric supra-amphiphile topologies and related applications are highlighted. By combining polymer chemistry with supramolecular chemistry and colloid science, we anticipate that the study of polymeric supra-amphiphiles will promote the continued development of the molecular engineering of functional supramolecular systems, and lead to practical applications, especially in drug delivery.

5.
Angew Chem Int Ed Engl ; 58(34): 11715-11719, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31206908

RESUMO

Simple inorganic salts are used to tune N-containing conjugated microporous polymers (CMPs) synthesized by Buchwald-Hartwig (BH) cross-coupling reactions. Poly(triphenylamine), PTPA, initially shows a broad distribution of micropores, mesopores, and macropores. However, the addition of inorganic salts affects all porous network properties significantly: the pore size distribution is narrowed to the microporous range only, mimicking COFs and MOFs; the BET surface area is radically improved from 58 m2 g-1 to 1152 m2 g-1 ; and variations of the anion and cation sizes are used to fine-tune the surface area of PTPA, with the surface area showing a gradual decrease with an increase in the ionic radius of salts. The effect of the salt on the physical properties of the polymer is attributed to adjusting and optimizing the Hansen solubility parameters (HSPs) of solvents for the growing polymer, and named the Beijing-Xi'an Jiaotong (BXJ) method.

6.
Chemistry ; 24(58): 15556-15565, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30047561

RESUMO

The controlled solution self-assembly of an amphiphilic perylene diimide (PDI), with a hydrophobic perylene core and hydrophilic imide substituents with polydisperse oligo(ethylene glycol) (OEG) tethers is presented. It was possible, by a seeded-growth mechanism, to form colloidally stable, one-dimensional fibres with controllable lengths (from 400 to 1700 nm) and low dispersities (1.19-1.29) via a living supramolecular polymerisation process. Under the solvent conditions used, it was found that molecularly dissolved material (unimer) was present in samples of the fibre-like supramolecular assemblies. The free unimer may be present in a conformationally derived kinetically trapped state and/or may represent a more soluble PDI fraction with longer hydrophilic tethers. Significantly, it was also possible to form segmented supramolecular block copolymers by the addition of PDI unimer to chemically distinct PDI seeds, yielding fibres with controlled lengths. These results represent a significant advance in the ability to form PDI-based supramolecular polymers with precisely controlled lengths and architectures.

7.
Chemistry ; 24(31): 7834-7839, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29644728

RESUMO

Antifreeze glycoproteins (AFGPs) are polymeric natural products that have drawn considerable interest in diverse research fields owing to their potent ice recrystallization inhibition (IRI) activity. Self-assembled materials have emerged as a promising class of biomimetic ice growth inhibitor, yet the development of AFGP-based supramolecular materials that emulate the aggregative behavior of AFGPs have not yet been reported. This work reports the first example of the 1D self-assembly and IRI activity of AFGP-functionalized perylene bisimides (AFGP-PBIs). Glycopeptide-functionalized PBIs underwent 1D self-assembly in water and showed modest IRI activity, which could be tuned through substitution of the PBI core. This work presents essential proof-of-principle for the development of novel IRIs as potential supramolecular cryoprotectants and glycoprotein mimics.


Assuntos
Proteínas Anticongelantes/química , Glicopeptídeos/química , Gelo , Imidas/química , Perileno/análogos & derivados , Água/química , Cristalização , Perileno/química , Multimerização Proteica , Termodinâmica
8.
J Am Chem Soc ; 139(12): 4409-4417, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28211270

RESUMO

Rectangular platelets formed by the self-assembly of block copolymers in selective solvents are of interest for a range of applications. Recently, we showed that the seeded growth of crystallizable blends of a block copolymer and homopolymer yields well-defined, low area dispersity examples of these two-dimensional (2D) structures. The key feature was the use of the same crystallizable polymer segment in the seed and blend components to enable an efficient homoepitaxial growth process. Herein we demonstrate that this 2D crystallization-driven self-assembly approach can be extended to heteroepitaxial growth by the use of different crystallizable polymers with compatible crystal structures. This allows the formation of well-defined "patchy" rectangular platelets and platelet block comicelles with different core chemistries. The use of scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy provided key information on the spatial location of the components in the resulting assemblies and thereby valuable insight into the 2D heteroepitaxial growth process.

9.
Nat Chem Biol ; 11(3): 221-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25664692

RESUMO

The noncovalent forces that stabilize protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. Electrostatic forces-which include interactions between side chains, the backbone and side chains, and side chains and the helix macrodipole-are believed to contribute to these equilibria. Here we probe these interactions experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (which include both local effects between proximal charges and interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, the understanding of protein folding and the refinement of force fields for biomolecular modeling and simulations. In addition, this study sheds light on the stability of rod-like structures formed by single α-helices, which are common in natural proteins such as non-muscle myosins.


Assuntos
Peptídeos/química , Estrutura Secundária de Proteína , Eletricidade Estática , Sequência de Aminoácidos , Biologia Computacional , Ácido Glutâmico/química , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Miosinas/química , Dobramento de Proteína , Desdobramento de Proteína
10.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28752583

RESUMO

Supramolecular polymers have attracted plenty of interest in the scientific community; however, developing controllable methods of supramolecular polymerization remains a serious challenge. This article reviews some recent developments of methods for supramolecular polymerization from controllable fabrication to living polymerization. Three facile methods with general applicability for controllable fabrication of supramolecular polymers have been established recently: the first method is a self-sorting approach by manipulating ring-chain equilibrium based on noncovalent control over rigidity of monomers; the second is covalent polymerization from supramonomers formed by noncovalent interactions; and the third is supramolecular interfacial polymerization. More excitingly, living supramolecular polymerization has been achieved by two elegant strategies, including seeded supramolecular polymerization under pathway complexity control and chain-growth supramolecular polymerization by metastable monomers. It is anticipated that this review may provide some guidance for precise fabrication of supramolecular polymers, leading to the construction of supramolecular polymeric materials with controllable architectures and functions.


Assuntos
Polimerização , Polímeros/síntese química , Substâncias Macromoleculares/química , Polímeros/química
11.
Chemistry ; 22(47): 16950-16956, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723154

RESUMO

We have prepared a simple star-shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI-TOF MS, UV/Vis/NIR spectroscopy, time-dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π-conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid-doped TDPB shows behaviour similar to discotic liquid crystals, with X-ray scattering investigations revealing columnar self-assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star-shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials.

12.
Langmuir ; 32(35): 9023-32, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27486788

RESUMO

Two chiral complexes (1-SDS and 1-SDBS) were prepared via the ionic self-assembly of a chiral perylene diimide tecton with oppositely charged surfactants. The effect of surfactant tail architecture on the self-assembly properties and supramolecular structure was investigated in detail using UV-vis, IR, circular dichroism, light microscopy, X-ray diffraction studies, and electron microscopy. The results obtained revealed the molecular chirality of the parent perylene tecton could be translated into supramolecular helical chirality of the resulting complexes via primary ionic interactions through careful choice of solvent and concentration. Differing solvent-dependent aggregation behavior was observed for these complexes as a result of the different possible noncovalent interactions via the surfactant alkyl tails. The results presented in this study demonstrate that ionic self-assembly (ISA) is a facile strategy for the production of chiral supramolecular materials based on perylene diimides. The structure-function relationship is easily explored here due to the wide selection and easy availability of common surfactants.

13.
Phys Chem Chem Phys ; 18(35): 24498-505, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27539382

RESUMO

The influence of processing conditions on the thin film microstructure is a fundamental question that must be understood to improve the performance of solution-processed organic electronic materials. Using grazing-incidence X-ray diffraction, we have studied the structure of thin films of a tetra(aniline)-surfactant complex prepared by drop-casting from five solvents (hexane, chloroform, tetrahydrofuran, dichloromethane and ethanol), selected to cover a range of polarities. We found that the structure, level of order and degree of orientation relative to the substrate were extremely sensitive to the solvent used. We have attempted to correlate such solvent sensitivity with a variety of solvent physical parameters. Of particular significance is the observation of a sharp structural transition in the thin films cast from more polar solvents; such films presented significantly greater crystallinity as measured by the coherence length and paracrystalline disorder parameter. We attribute this higher structural order to enhanced dissociation of the acid surfactant in the more polar solvents, which in turn promotes complex formation. Furthermore, the more polar solvents provide more effective screening of (i) the attractive ionic interaction between oppositely charged molecules, providing greater opportunity for dynamic reorganisation of the supramolecular aggregates into more perfect structures; and (ii) the repulsive interaction between the positively charged blocks permitting a solvophobic-driven aggregation of the aromatic surfaces during solvent evaporation.

14.
J Am Chem Soc ; 137(45): 14288-94, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26496508

RESUMO

A tetra(aniline)-based cationic amphiphile, TANI-NHC(O)C5H10N(CH3)3(+)Br(-) (TANI-PTAB) was synthesized, and its emeraldine base (EB) state was found to self-assemble into nanowires in aqueous solution. The observed self-assembly is described by an isodesmic model, as shown by temperature-dependent UV-vis investigations. Linear dichroism (LD) studies, combined with computational modeling using time-dependent density functional theory (TD-DFT), suggests that TANI-PTAB molecules are ordered in an antiparallel arrangement within nanowires, with the long axis of TANI-PTAB arranged perpendicular to the nanowire long axis. Addition of either S- or R- camphorsulfonic acid (CSA) to TANI-PTAB converted TANI to the emeraldine salt (ES), which retained the ability to form nanowires. Acid doping of TANI-PTAB had a profound effect on the nanowire morphology, as the CSA counterions' chirality translated into helical twisting of the nanowires, as observed by circular dichroism (CD). Finally, the electrical conductivity of CSA-doped helical nanowire thin films processed from aqueous solution was 2.7 mS cm(-1). The conductivity, control over self-assembled 1D structure and water-solubility demonstrate these materials' promise as processable and addressable functional materials for molecular electronics, redox-controlled materials and sensing.

15.
Small ; 11(38): 5054-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26222541

RESUMO

Using a conductive atomic force microscope (c-AFM) redox-writing technique, it is shown that it is possible to locally, and reversibly, pattern conducting, and nonconducting features on the surface of a low molecular weight aniline-based organic (semi)-conductor thin film using a commercial c-AFM. It is shown that application of a voltage between the tip and sample causes localized redox reactions at the surface without damage.

16.
Small ; 11(28): 3430-4, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25786786

RESUMO

The self-assembly of two emeraldine base tetra(aniline) derivatives is investigated using scanning tunneling microscopy. A combination of the scanning tunneling microscopy data and calculations reveals the presence of predicted cis/trans isomerism in this oxidation state. This isomerism is shown to hinder self-assembly into ordered structures, and provides indications as to why the properties of these materials, and their parent polymer, polyaniline, remain unfulfilled.

17.
Acc Chem Res ; 47(12): 3428-38, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25191750

RESUMO

CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons, specifically deoxyguanosine monophosphate. This approach proved, in combination with block copolymer (BCP) self-assembly, very fruitful for the construction of complex and hierarchical functional materials across multiple length scales. Molecular frustration and incommensurability, which played a major role in structure formation in combination with nucleotide assembly, have now become important tools to tune supramolecular structure formation. These concepts, that is, the use of BCP assembly and incommensurability, in combination with metal-containing polymeric materials, have provided access to novel supramolecular morphologies and, more importantly, design rules to prepare such constructs. These design rules are now also being applied to the assembly of electroactive oligo(aniline)-based materials for the preparation of highly ordered functional soft materials, and present an opportunity for materials development for applications in energy storage. In this Account, we therefore discuss investigations into (i) the inclusion and preparation of supramolecular photoactive and electroactive materials; (ii) the exploitation and control over multiple noncovalent interactions to fine-tune function, internal structure, and long-range order and (iii) exploration of construction over multiple length scales by combination of ISA with well-known BCP self-assembly. Combination of ISA with tuning of volume fractions, mutual compatibility, and molecular frustration now provides a versatile tool kit to construct complex and hierarchical functional materials in a facile noncovalent way. A direct challenge for future ISA activities would certainly be the construction of functional mesoscale objects. However, within a broader scientific context, the challenge would be to exploit this powerful assembly tool for application in areas of research with societal impact, for example, energy storage and generation. The hope is that this Account will provide a platform for such future research activities and opportunities.

18.
Chemistry ; 21(13): 5118-28, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25689392

RESUMO

A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L-phenylalanine. Detailed studies were carried out into the self-assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right-handed helical aggregates in aqueous solution. Temperature-dependent UV/Vis studies of BTPPP in aqueous solution showed that the self-assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide-angle X-ray diffraction studies (WXRD) revealed that this material self-organises into aggregates with π-π stacking distances typical for π-conjugated materials. TEM investigations revealed the formation of self-assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid-crystalline phases were observed for solvent-annealed samples of BTPPP. The high solubility, tunable self-assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro-optical structures and devices.

19.
Macromol Rapid Commun ; 35(21): 1833-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25228586

RESUMO

Novel macrocyclic amine-linked oligocarbazole hollow microspheres are synthesized via a one-step oxidative method in aqueous solution. Upon altering the oxidants and acidic media, the average diameters of the obtained hollow microspheres are tunable from 0.23 to 2.0 µm. With attractive amine and carbazole functionalities, exposed surface area, thermostability, and photoluminescent properties, the amine-linked oligocarbazole hollow microspheres are directly assembled to yield heavy metal sorbents with excellent selectivity and recyclability, shown to efficiently remove lead from contaminated water.


Assuntos
Aminas/química , Carbazóis/química , Compostos Macrocíclicos/química , Microesferas , Adsorção , Técnicas de Química Sintética/métodos , Dimerização , Condutividade Elétrica , Fluorescência , Chumbo/química , Chumbo/isolamento & purificação , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Modelos Químicos , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
20.
Adv Sci (Weinh) ; 11(14): e2308228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326090

RESUMO

Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA