Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Horm Behav ; 143: 105196, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597054

RESUMO

Despite decades of research into the evolutionary drivers of sociality, we know relatively little about the underlying proximate mechanisms. Here we investigate the potential role of prolactin in the highly social naked mole-rat. Naked mole-rats live in large social groups but, only a small number of individuals reproduce. The remaining non-breeders are reproductively suppressed and contribute to burrow maintenance, foraging, and allo-parental care. Prolactin has well-documented links with reproductive timing and parental behaviour, and the discovery that non-breeding naked mole-rats have unusually high prolactin levels has led to the suggestion that prolactin may help maintain naked mole-rat sociality. To test this idea, we investigated whether urinary prolactin was correlated with cooperative behaviour and aggression. We then administered the prolactin-suppressing drug Cabergoline to eight female non-breeders for eight weeks and assessed the physiology and behaviour of the animals relative to controls. Contrary to the mammalian norm, and supporting previous findings for plasma, we found non-breeders had elevated urinary prolactin concentrations that were similar to breeding females. Further, prolactin levels were higher in heavier, socially dominant non-breeders. Urinary prolactin concentrations did not explain variation in working behaviour or patterns of aggression. Furthermore, females receiving Cabergoline did not show any behavioural or hormonal (progesterone) differences, and urinary prolactin did not appear to be suppressed in individuals receiving Cabergoline. While the results add to the relatively limited literature experimentally manipulating prolactin to investigate its role in reproduction and behaviour, they fail to explain why prolactin levels are high in non-breeding naked mole-rats, or how female non-breeding phenotypes are maintained.


Assuntos
Ratos-Toupeira , Prolactina , Animais , Cabergolina , Feminino , Ratos-Toupeira/fisiologia , Reprodução/fisiologia , Comportamento Social
2.
Adv Exp Med Biol ; 1319: 1-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424511

RESUMO

The African mole-rat superfamily are a unique group of subterranean rodents that are remarkable for their adaptations to a subterranean lifestyle and their range in sociality, spanning strictly solitary species to the naked mole-rat, the most social of all rodents. Widely distributed through sub-Saharan Africa their occurrence is associated with the presence of food resources in the form of underground roots, bulbs and tubers, which form their staple diet. African mole-rats have an ancient Oligocene/Eocene origin, with the naked mole-rat, the extant species with the earliest divergence from the common ancestor of the clade. As a consequence of its early evolution the naked mole-rat appears to have acquired many extraordinary biological features, even when compared with other mole-rats. Molecular phylogenies indicate that complex sociality and cooperative breeding has been convergently gained and/or lost more than once among African mole-rats, making them a fascinating group for comparative studies of social evolution. Ultimately, ecological constraints on digging and finding food have played a role in increasing cooperative behavior and social complexity, from what was most likely a monogamous ancestor living in family groups. Phylogenetically controlled comparisons suggest that proximate control of their lifestyle shows both conservation and divergence in the underlying mechanisms.


Assuntos
Ratos-Toupeira , Evolução Social , Adaptação Fisiológica , Animais , Ratos-Toupeira/genética , Filogenia , Comportamento Social
3.
Adv Exp Med Biol ; 1319: 59-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424513

RESUMO

The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.


Assuntos
Ratos-Toupeira , Reprodução , Animais , Feminino , Gonadotropinas , Masculino , Sistemas Neurossecretores , Ocitocina
4.
Mol Biol Evol ; 32(12): 3089-107, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318402

RESUMO

During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein-protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.


Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Ecossistema , Ratos-Toupeira/genética , África Subsaariana , Animais , Evolução Biológica , Ecologia , Evolução Molecular , Genômica , Filogenia , Ratos , Seleção Genética , Análise de Sequência de DNA/veterinária , Transcriptoma
5.
Biol Lett ; 11(5): 20150185, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25948568

RESUMO

The naked mole-rat (NMR) Heterocephalus glaber is a unique and fascinating mammal exhibiting many unusual adaptations to a subterranean lifestyle. The recent discovery of their resistance to cancer and exceptional longevity has opened up new and important avenues of research. Part of this resistance to cancer has been attributed to the fact that NMRs produce a modified form of hyaluronan--a key constituent of the extracellular matrix--that is thought to confer increased elasticity of the skin as an adaptation for living in narrow tunnels. This so-called high molecular mass hyaluronan (HMM-HA) stems from two apparently unique substitutions in the hyaluronan synthase 2 enzyme (HAS2). To test whether other subterranean mammals with similar selection pressures also show molecular adaptation in their HAS2 gene, we sequenced the HAS2 gene for 11 subterranean mammals and closely related species, and combined these with data from 57 other mammals. Comparative screening revealed that one of the two putatively important HAS2 substitutions in the NMR predicted to have a significant effect on hyaluronan synthase function was uniquely shared by all African mole-rats. Interestingly, we also identified multiple other amino acid substitutions in key domains of the HAS2 molecule, although the biological consequences of these for hyaluronan synthesis remain to be determined. Despite these results, we found evidence of strong purifying selection acting on the HAS2 gene across all mammals, and the NMR remains unique in its particular HAS2 sequence. Our results indicate that more work is needed to determine whether the apparent cancer resistance seen in NMR is shared by other members of the African mole-rat clade.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Glucuronosiltransferase/genética , Neoplasias/genética , Doenças dos Roedores/genética , Roedores , Solo , Adaptação Biológica , Animais , Eulipotyphla/genética , Eulipotyphla/fisiologia , Glucuronosiltransferase/metabolismo , Dados de Sequência Molecular , Doenças dos Roedores/enzimologia , Roedores/genética , Roedores/fisiologia , Alinhamento de Sequência/veterinária , Análise de Sequência de Proteína/veterinária
6.
J Virol ; 86(9): 5221-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345474

RESUMO

Circoviruses are among the smallest and simplest of all viruses, but they are relatively poorly characterized. Here, we intensively sampled two sympatric parrot populations from Mauritius over a period of 11 years and screened for the circovirus Beak and feather disease virus (BFDV). During the sampling period, a severe outbreak of psittacine beak and feather disease, which is caused by BFDV, occurred in Echo parakeets. Consequently, this data set presents an ideal system for studying the evolution of a pathogen in a natural population and to understand the adaptive changes that cause outbreaks. Unexpectedly, we discovered that the outbreak was most likely caused by changes in functionally important regions of the normally conserved replication-associated protein gene and not the immunogenic capsid. Moreover, these mutations were completely fixed in the Echo parakeet host population very shortly after the outbreak. Several capsid alleles were linked to the replication-associated protein outbreak allele, suggesting that whereas the key changes occurred in the latter, the scope of the outbreak and the selective sweep may have been influenced by positive selection in the capsid. We found evidence for viral transmission between the two host populations though evidence for the invasive species as the source of the outbreak was equivocal. Finally, the high evolutionary rate that we estimated shows how rapidly new variation can arise in BFDV and is consistent with recent results from other small single-stranded DNA viruses.


Assuntos
Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/genética , Surtos de Doenças/veterinária , Espécies em Perigo de Extinção , Evolução Molecular , Periquitos/virologia , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/transmissão , Circovirus/classificação , Cruzamentos Genéticos , Genes Virais , Dados de Sequência Molecular , Taxa de Mutação , Filogenia , Seleção Genética
7.
Animals (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359164

RESUMO

The naked mole-rat (Heterocephalus glaber) and the Damaraland mole-rat (Fukomys damarensis) possess extreme reproductive skew with a single reproductive female responsible for reproduction. In this review, we synthesize advances made into African mole-rat reproductive patterns and physiology within the context of the social control of reproduction. Non-reproductive female colony members have low concentrations of luteinising hormone (LH) and a reduced response of the pituitary to a challenge with gonadotropin releasing hormone (GnRH). If the reproductive female is removed from the colony, an increase in the basal plasma LH and increased pituitary response to a GnRH challenge arises in the non-reproductive females, suggesting the reproductive female controls reproduction. Non-reproductive male Damaraland mole-rats have basal LH concentrations and elevated LH concentrations in response to a GnRH challenge comparable to the breeding male, but in non-breeding male naked mole-rats, the basal LH concentrations are low and there is a muted response to a GnRH challenge. This renders these two species ideal models to investigate physiological, behavioural and neuroendocrine mechanisms regulating the hypothalamic-pituitary-gonadal axis. The recently discovered neuropeptides kisspeptin and RFamide-related peptide-3 are likely candidates to play an important role in the regulation of reproductive functions in the two mole-rat species.

8.
Nature ; 437(7057): 408-11, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16163356

RESUMO

Mating strategies that lead to increased kinship within socially cooperative groups may offer inclusive fitness benefits to individuals, but can also result in higher levels of inbreeding. Here we show in a sexually segregated bat species that females avoid this conflict through two mating behaviours. First, most females revisit and breed with specific, individual males across years, so that their single offspring born in different years are full siblings. Second, relatives in the maternal line, including mothers and daughters, share breeding partners (intra-lineage polygyny) more often than expected by chance. Although these behaviours increased levels of co-ancestry among colony members, there was no concomitant rise in inbreeding. We suggest that when females engage in mate fidelity and intra-lineage polygyny, kin ties among female roost mates will be strengthened, thereby potentially contributing to social group cohesiveness. Our findings reveal the hidden complexity that can underlie polygynous breeding, and highlight a new potential route by which female mate choice could influence social evolution.


Assuntos
Quirópteros/genética , Quirópteros/fisiologia , Linhagem , Comportamento Sexual Animal/fisiologia , Animais , Evolução Biológica , Comportamento Cooperativo , Feminino , Masculino , Repetições de Microssatélites/genética
9.
J Comp Neurol ; 523(16): 2344-71, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25921928

RESUMO

Various aspects of social behavior are influenced by the highly conserved corticotrophin-releasing factor (CRF) family of peptides and receptors in the mammalian telencephalon. This study has mapped and compared the telencephalic distribution of the CRF receptors, CRF1 and CRF2 , and two of their ligands, CRF and urocortin 3, respectively, in African mole-rat species with diametrically opposed social behavior. Naked mole-rats live in large eusocial colonies that are characterized by exceptional levels of social cohesion, tolerance, and cooperation in burrowing, foraging, defense, and alloparental care for the offspring of the single reproductive female. Cape mole-rats are solitary; they tolerate conspecifics only fleetingly during the breeding season. The telencephalic sites at which the level of CRF1 binding in naked mole-rats exceeds that in Cape mole-rats include the basolateral amygdaloid nucleus, hippocampal CA3 subfield, and dentate gyrus; in contrast, the level is greater in Cape mole-rats in the shell of the nucleus accumbens and medial habenular nucleus. For CRF2 binding, the sites with a greater level in naked mole-rats include the basolateral amygdaloid nucleus and dentate gyrus, but the septohippocampal nucleus, lateral septal nuclei, amygdalostriatal transition area, bed nucleus of the stria terminalis, and medial habenular nucleus display a greater level in Cape mole-rats. The results are discussed with reference to neuroanatomical and behavioral studies of various species, including monogamous and promiscuous voles. By analogy with findings in those species, we speculate that the abundance of CRF1 binding in the nucleus accumbens of Cape mole-rats reflects their lack of affiliative behavior.


Assuntos
Ratos-Toupeira/metabolismo , Ratos-Toupeira/psicologia , Comportamento Social , Telencéfalo/metabolismo , Animais , Autorradiografia , Hormônio Liberador da Corticotropina/metabolismo , Imuno-Histoquímica , Masculino , Fotomicrografia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Especificidade da Espécie , Urocortinas/metabolismo
10.
Proc Biol Sci ; 271(1536): 273-8, 2004 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15058438

RESUMO

African mole-rats are a family of rodents exhibiting an eclectic range of social behaviour and occupying a variety of habitat types. These differences are likely to impact upon the risk of parasite transmission and virulence, with increasing sociality predicted to correspond to an increased risk of transmission. We investigate these factors by analysing the major histocompatibility complex (MHC), a set of genes responsible for encoding highly variable intermediaries of the vertebrate adaptive immune response. To this end we assessed selection at exons 2 and 3 of the MHC class II DQalpha1 gene of four African mole-rat species representing a range of social behaviours. We demonstrate that: (i) the overall pattern of selection at these exons differentiates according to the predicted function of different regions, with the presence of positive selection indicating the likely influence of host-parasite coevolution; and (ii) contrary to the often observed and predicted positive correspondence between sociality and the risk of parasite transmission, two highly social African mole-rat species in fact appear to have comparatively weak positive selection, suggesting diminished host immunity and thus a low overall risk of parasite transmission.


Assuntos
Meio Ambiente , Genes MHC da Classe II/genética , Ratos-Toupeira/genética , Seleção Genética , Comportamento Social , África , Animais , Sequência de Bases , Funções Verossimilhança , Ratos-Toupeira/parasitologia , Ratos-Toupeira/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA