Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2216397120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068237

RESUMO

The plant immune system relies on the perception of molecules that signal the presence of a microbe threat. This triggers signal transduction that mediates a range of cellular responses via a collection of molecular machinery including receptors, small molecules, and enzymes. One response to pathogen perception is the restriction of cell-to-cell communication by plasmodesmal closure. We previously found that while chitin and flg22 trigger specialized immune signaling cascades in the plasmodesmal plasma membrane, both execute plasmodesmal closure via callose synthesis at the plasmodesmata. Therefore, the signaling pathways ultimately converge at or upstream of callose synthesis. To establish the hierarchy of signaling at plasmodesmata and characterize points of convergence in microbe elicitor-triggered signaling, we profiled the dependence of plasmodesmal responses triggered by different elicitors on a range of plasmodesmal signaling machinery. We identified that, like chitin, flg22 signals via RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) to induce plasmodesmal closure. Further, we found that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1), PDLP5, and CALLOSE SYNTHASE 1 (CALS1) are common to microbe- and salicylic acid (SA)-triggered responses, identifying PDLPs as a candidate signaling nexus. To understand how PDLPs relay a signal to CALS1, we screened for PDLP5 interactors and found NON-RACE SPECIFIC DISEASE RESISTANCE/HIN1 HAIRPIN-INDUCED-LIKE protein 3 (NHL3), which is also required for chitin-, flg22- and SA-triggered plasmodesmal responses and PDLP-mediated activation of callose synthesis. We conclude that a PDLP-NHL3 complex acts as an integrating node of plasmodesmal signaling cascades, transmitting multiple immune signals to activate CALS1 and plasmodesmata closure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Transdução de Sinais , Ácido Salicílico/metabolismo , Quitina/metabolismo
2.
Plant Cell ; 34(1): 72-102, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34529074

RESUMO

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Biologia Celular , Desenvolvimento Vegetal
3.
Mol Plant Microbe Interact ; 37(2): 84-92, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942798

RESUMO

In plants, plasmodesmata establish cytoplasmic continuity between cells to allow for communication and resource exchange across the cell wall. While plant pathogens use plasmodesmata as a pathway for both molecular and physical invasion, the benefits of molecular invasion (cell-to-cell movement of pathogen effectors) are poorly understood. To establish a methodology for identification and characterization of the cell-to-cell mobility of effectors, we performed a quantitative live imaging-based screen of candidate effectors of the fungal pathogen Colletotrichum higginsianum. We predicted C. higginsianum effectors by their expression profiles, the presence of a secretion signal, and their predicted and in planta localization when fused to green fluorescent protein. We assayed for cell-to-cell mobility of nucleocytosolic effectors and identified 14 that are cell-to-cell mobile. We identified that three of these effectors are "hypermobile," showing cell-to-cell mobility greater than expected for a protein of that size. To explore the mechanism of hypermobility, we chose two hypermobile effectors and measured their impact on plasmodesmata function and found that even though they show no direct association with plasmodesmata, each increases the transport capacity of plasmodesmata. Thus, our methods for quantitative analysis of cell-to-cell mobility of candidate microbe-derived effectors, or any suite of host proteins, can identify cell-to-cell hypermobility and offer greater understanding of how proteins affect plasmodesmal function and intercellular connectivity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Plantas , Plasmodesmos , Plasmodesmos/metabolismo , Plantas/metabolismo , Citoplasma , Citosol , Parede Celular
4.
New Phytol ; 243(1): 32-47, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38494438

RESUMO

Plasmodesmata are plasma membrane-lined connections that join plant cells to their neighbours, establishing an intercellular cytoplasmic continuum through which molecules can travel between cells, tissues, and organs. As plasmodesmata connect almost all cells in plants, their molecular traffic carries information and resources across a range of scales, but dynamic control of plasmodesmal aperture can change the possible domains of molecular exchange under different conditions. Plasmodesmal aperture is controlled by specialised signalling cascades accommodated in spatially discrete membrane and cell wall domains. Thus, the composition of plasmodesmata defines their capacity for molecular trafficking. Further, their shape and density can likewise define trafficking capacity, with the cell walls between different cell types hosting different numbers and forms of plasmodesmata to drive molecular flux in physiologically important directions. The molecular traffic that travels through plasmodesmata ranges from small metabolites through to proteins, and possibly even larger mRNAs. Smaller molecules are transmitted between cells via passive mechanisms but how larger molecules are efficiently trafficked through plasmodesmata remains a key question in plasmodesmal biology. How plasmodesmata are formed, the shape they take, what they are made of, and what passes through them regulate molecular traffic through plants, underpinning a wide range of plant physiology.


Assuntos
Plasmodesmos , Plasmodesmos/metabolismo , Transporte Biológico , Plantas/metabolismo , Células Vegetais/metabolismo
5.
New Phytol ; 241(1): 298-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882365

RESUMO

In leaves of C4 plants, the reactions of photosynthesis become restricted between two compartments. Typically, this allows accumulation of C4 acids in mesophyll (M) cells and subsequent decarboxylation in the bundle sheath (BS). In C4 grasses, proliferation of plasmodesmata between these cell types is thought to increase cell-to-cell connectivity to allow efficient metabolite movement. However, it is not known whether C4 dicotyledons also show this enhanced plasmodesmal connectivity and so whether this is a general requirement for C4 photosynthesis is not clear. How M and BS cells in C4 leaves become highly connected is also not known. We investigated these questions using 3D- and 2D-electron microscopy on the C4 dicotyledon Gynandropsis gynandra as well as phylogenetically close C3 relatives. The M-BS interface of C4 G. gynandra showed higher plasmodesmal frequency compared with closely related C3 species. Formation of these plasmodesmata was induced by light. Pharmacological agents that perturbed photosynthesis reduced the number of plasmodesmata, but this inhibitory effect could be reversed by the provision of exogenous sucrose. We conclude that enhanced formation of plasmodesmata between M and BS cells is wired to the induction of photosynthesis in C4 G. gynandra.


Assuntos
Magnoliopsida , Células do Mesofilo , Células do Mesofilo/metabolismo , Plasmodesmos/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Poaceae
6.
J Microsc ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349020

RESUMO

Colocalisation microscopy analysis provides an intuitive and straightforward way of determining if two biomolecules occupy the same diffraction-limited volume. A popular colocalisation coefficient, the Pearson's correlation coefficient (PCC), can be calculated using different pixel selection criteria: PCCALL includes all image pixels, PCCOR only pixels exceeding the intensity thresholds for either one of the detection channels, and PCCAND only pixels exceeding the intensity thresholds for both detection channels. Our results show that PCCALL depends on the foreground to background ratio, producing values influenced by factors unrelated to biomolecular association. PCCAND focuses on areas with the highest intensities in both channels, which allows it to detect low levels of colocalisation, but makes it inappropriate for evaluating spatial cooccurrence between the signals. PCCOR produces values influenced both by signal proportionality and spatial cooccurrence but can sometimes overemphasise the lack of the latter. Overall, PCCAND excels at detecting low levels of colocalisation, PCCOR provides a balanced quantification of signal proportionality and spatial coincidence, and PCCALL risks misinterpretation yet avoids segmentation challenges. Awareness of their distinct properties should inform their appropriate application with the aim of accurately representing the underlying biology.

7.
J Exp Bot ; 74(6): 1821-1835, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36639877

RESUMO

Plasmodesmata are cytosolic bridges, lined by the plasma membrane and traversed by endoplasmic reticulum; plasmodesmata connect cells and tissues, and are critical for many aspects of plant biology. While plasmodesmata are notoriously difficult to extract, tissue fractionation and proteomic analyses can yield valuable knowledge of their composition. Here we have generated two novel proteomes to expand tissue and taxonomic representation of plasmodesmata: one from mature Arabidopsis leaves and one from the moss Physcomitrium patens, and leveraged these and existing data to perform a comparative analysis to identify evolutionarily conserved protein families that are associated with plasmodesmata. Thus, we identified ß-1,3-glucanases, C2 lipid-binding proteins, and tetraspanins as core plasmodesmal components that probably serve as essential structural or functional components. Our approach has not only identified elements of a conserved plasmodesmal proteome, but also demonstrated the added power offered by comparative analysis for recalcitrant samples. Conserved plasmodesmal proteins establish a basis upon which ancient plasmodesmal function can be further investigated to determine the essential roles these structures play in multicellular organism physiology in the green lineages.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plasmodesmos/metabolismo , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteoma/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(17): 9621-9629, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284410

RESUMO

The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses. We exploited the independence of this PM domain to investigate how membrane domains can independently integrate a signal that triggers responses across the cell. Focusing on chitin signaling, we found that responses in the plasmodesmal PM require the LysM receptor kinases LYK4 and LYK5 in addition to LYM2. Chitin induces dynamic changes in the localization, association, or mobility of these receptors, but only LYM2 and LYK4 are detected in the plasmodesmal PM. We further uncovered that chitin-induced production of reactive oxygen species and callose depends on specific signaling events that lead to plasmodesmata closure. Our results demonstrate that distinct membrane domains can integrate a common signal with specific machinery that initiates discrete signaling cascades to produce a localized response.


Assuntos
Arabidopsis/fisiologia , Quitina/metabolismo , Nicotiana/fisiologia , Plasmodesmos/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Membrana Celular/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mecanotransdução Celular/fisiologia , Folhas de Planta/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio
9.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952362

RESUMO

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/fisiologia , Hemípteros/microbiologia , Liberibacter , Doenças das Plantas/microbiologia
10.
Proc Natl Acad Sci U S A ; 115(6): 1388-1393, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363594

RESUMO

RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas Virais/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Begomovirus/química , Interações Hospedeiro-Patógeno/genética , Células Vegetais , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Nicotiana/genética , Proteínas Virais/metabolismo
11.
Traffic ; 18(10): 683-693, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28746801

RESUMO

High throughput confocal imaging poses challenges in the computational image analysis of complex subcellular structures such as the microtubule cytoskeleton. Here, we developed CellArchitect, an automated image analysis tool that quantifies changes to subcellular patterns illustrated by microtubule markers in plants. We screened microtubule-targeted herbicides and demonstrate that high throughput confocal imaging with integrated image analysis by CellArchitect can distinguish effects induced by the known herbicides indaziflam and trifluralin. The same platform was used to examine 6 other compounds with herbicidal activity, and at least 3 different effects induced by these compounds were profiled. We further show that CellArchitect can detect subcellular patterns tagged by actin and endoplasmic reticulum markers. Thus, the platform developed here can be used to automate image analysis of complex subcellular patterns for purposes such as herbicide discovery and mode of action characterisation. The capacity to use this tool to quantitatively characterize cellular responses lends itself to application across many areas of biology.


Assuntos
Herbicidas/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Microtúbulos/efeitos dos fármacos , Imagem Óptica/métodos , Moduladores de Tubulina/farmacologia , Actinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Indenos/farmacologia , Microtúbulos/metabolismo , Ligação Proteica , Triazinas/farmacologia , Trifluralina/farmacologia , Tubulina (Proteína)/metabolismo
12.
New Phytol ; 217(1): 62-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083038

RESUMO

Contents Summary 62 I. Introduction 62 II. Plasmodesmal regulation is an innate defence response 63 III. Reactive oxygen species regulate plasmodesmal function 63 IV. Plasmodesmal regulation by and of defence-associated small molecules 64 V. Plasmodesmata facilitate systemic defence signalling 64 VI. Virulent pathogens exploit plasmodesmata 66 VII. Outlook 66 Acknowledgements 66 References 66 SUMMARY: Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant-pathogen interactions.


Assuntos
Interações Hospedeiro-Patógeno , Células Vegetais/metabolismo , Imunidade Vegetal , Plantas/metabolismo , Plasmodesmos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Parede Celular , Citoplasma/metabolismo , Glucanos/metabolismo , Células Vegetais/imunologia , Plantas/imunologia , Plasmodesmos/imunologia , Transdução de Sinais
13.
New Phytol ; 218(4): 1310-1314, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574753

RESUMO

Plasmodesmata (PD) are membrane-lined pores that connect neighbouring plant cells and allow molecular exchange via the symplast. Past studies have revealed the basic structure of PD, some of the transport mechanisms for molecules through PD, and a variety of physiological processes in which they function. Recently, with the help of newly developed technologies, several exciting new features of PD have been revealed. New PD structures were observed during early formation of PD and between phloem sieve elements and phloem pole pericycle cells in roots. Both observations challenge our current understanding of PD structure and function. Research into novel physiological responses, which are regulated by PD, indicates that we have not yet fully explored the potential contribution of PD to overall plant function. In this Viewpoint article, we summarize some of the recent advances in understanding the structure and function of PD and propose the challenges ahead for the community.


Assuntos
Parede Celular/fisiologia , Plasmodesmos/fisiologia , Sinalização do Cálcio , Relógios Circadianos , Genoma de Planta , Simbiose
14.
New Phytol ; 215(1): 77-84, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28513846

RESUMO

Plants sense microbial signatures via activation of pattern recognition receptors (PPRs), which trigger a range of cellular defences. One response is the closure of plasmodesmata, which reduces symplastic connectivity and the capacity for direct molecular exchange between host cells. Plasmodesmal flux is regulated by a variety of environmental cues but the downstream signalling pathways are poorly defined, especially the way in which calcium regulates plasmodesmal closure. Here, we identify that closure of plasmodesmata in response to bacterial flagellin, but not fungal chitin, is mediated by a plasmodesmal-localized Ca2+ -binding protein Calmodulin-like 41 (CML41). CML41 is transcriptionally upregulated by flg22 and facilitates rapid callose deposition at plasmodesmata following flg22 treatment. CML41 acts independently of other defence responses triggered by flg22 perception and reduces bacterial infection. We propose that CML41 enables Ca2+ -signalling specificity during bacterial pathogen attack and is required for a complete defence response against Pseudomonas syringae.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/imunologia , Proteínas de Ligação ao Cálcio/fisiologia , Calmodulina/fisiologia , Plasmodesmos/fisiologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/imunologia , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , Clonagem Molecular , Flagelina/imunologia , Plasmodesmos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia
15.
PLoS Pathog ; 10(10): e1004496, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25393742

RESUMO

The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo
17.
Plant Cell ; 25(1): 57-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23371949

RESUMO

Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink-source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Plasmodesmos/ultraestrutura , Algoritmos , Arabidopsis/efeitos dos fármacos , Transporte Biológico , Comunicação Celular/fisiologia , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Citocinese/efeitos dos fármacos , Proteínas de Fluorescência Verde , Manitol/farmacologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Plasmodesmos/efeitos dos fármacos , Ácido Salicílico/farmacologia
18.
Proc Natl Acad Sci U S A ; 110(22): 9166-70, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23674687

RESUMO

Chitin acts as a pathogen-associated molecular pattern from fungal pathogens whose perception triggers a range of defense responses. We show that LYSIN MOTIF DOMAIN-CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN 2 (LYM2), the Arabidopsis homolog of a rice chitin receptor-like protein, mediates a reduction in molecular flux via plasmodesmata in the presence of chitin. For this response, lym2-1 mutants are insensitive to the presence of chitin, but not to the flagellin derivative flg22. Surprisingly, the chitin-recognition receptor CHITIN ELCITOR RECEPTOR KINASE 1 (CERK1) is not required for chitin-induced changes to plasmodesmata flux, suggesting that there are at least two chitin-activated response pathways in Arabidopsis and that LYM2 is not required for CERK1-mediated chitin-triggered defense responses, indicating that these pathways are independent. In accordance with a role in the regulation of intercellular flux, LYM2 is resident at the plasma membrane and is enriched at plasmodesmata. Chitin-triggered regulation of molecular flux between cells is required for defense responses against the fungal pathogen Botrytis cinerea, and thus we conclude that the regulation of symplastic continuity and molecular flux between cells is a vital component of chitin-triggered immunity in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Botrytis , Comunicação Celular/imunologia , Quitina/metabolismo , Doenças das Plantas/imunologia , Plasmodesmos/metabolismo , Receptores de Superfície Celular/metabolismo , Compostos de Anilina , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia Confocal , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/fisiologia , Azul Tripano
19.
J Exp Bot ; 66(6): 1565-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25716696

RESUMO

In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses.


Assuntos
Interações Hospedeiro-Patógeno , Microdomínios da Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Transporte Proteico
20.
Plant Cell ; 24(10): 4205-19, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23085733

RESUMO

The activity of surface receptors is location specific, dependent upon the dynamic membrane trafficking network and receptor-mediated endocytosis (RME). Therefore, the spatio-temporal dynamics of RME are critical to receptor function. The plasma membrane receptor flagellin sensing2 (FLS2) confers immunity against bacterial infection through perception of flagellin (flg22). Following elicitation, FLS2 is internalized into vesicles. To resolve FLS2 trafficking, we exploited quantitative confocal imaging for colocalization studies and chemical interference. FLS2 localizes to bona fide endosomes via two distinct endocytic trafficking routes depending on its activation status. FLS2 receptors constitutively recycle in a Brefeldin A (BFA)-sensitive manner, while flg22-activated receptors traffic via ARA7/Rab F2b- and ARA6/Rab F1-positive endosomes insensitive to BFA. FLS2 endocytosis required a functional Rab5 GTPase pathway as revealed by dominant-negative ARA7/Rab F2b. Flg22-induced FLS2 endosomal numbers were increased by Concanamycin A treatment but reduced by Wortmannin, indicating that activated FLS2 receptors are targeted to late endosomes. RME inhibitors Tyrphostin A23 and Endosidin 1 altered but did not block induced FLS2 endocytosis. Additional inhibitor studies imply the involvement of the actin-myosin system in FLS2 internalization and trafficking. Altogether, we report a dynamic pattern of subcellular trafficking for FLS2 and reveal a defined framework for ligand-dependent endocytosis of this receptor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endossomos/metabolismo , Proteínas Quinases/metabolismo , Androstadienos/farmacologia , Proteínas de Arabidopsis/análise , Transporte Biológico , Endocitose , Endossomos/efeitos dos fármacos , Macrolídeos/farmacologia , Proteínas Quinases/análise , Transporte Proteico , Tirfostinas/farmacologia , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA