Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EMBO J ; 42(20): e113510, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530438

RESUMO

Unscheduled increases in ploidy underlie defects in tissue function, premature aging, and malignancy. A concomitant event to polyploidization is the amplification of centrosomes, the main microtubule organization centers in animal cells. Supernumerary centrosomes are frequent in tumors, correlating with higher aggressiveness and poor prognosis. However, extra centrosomes initially also exert an onco-protective effect by activating p53-induced cell cycle arrest. If additional signaling events initiated by centrosomes help prevent pathology is unknown. Here, we report that extra centrosomes, arising during unscheduled polyploidization or aberrant centriole biogenesis, induce activation of NF-κB signaling and sterile inflammation. This signaling requires the NEMO-PIDDosome, a multi-protein complex composed of PIDD1, RIPK1, and NEMO/IKKγ. Remarkably, the presence of supernumerary centrosomes suffices to induce a paracrine chemokine and cytokine profile, able to polarize macrophages into a pro-inflammatory phenotype. Furthermore, extra centrosomes increase the immunogenicity of cancer cells and render them more susceptible to NK-cell attack. Hence, the PIDDosome acts as a dual effector, able to engage not only the p53 network for cell cycle control but also NF-κB signaling to instruct innate immunity.


Assuntos
NF-kappa B , Neoplasias , Animais , Centrossomo/metabolismo , Inflamação/patologia , Monitorização Imunológica , Neoplasias/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos
2.
Mol Cell ; 73(3): 413-428.e7, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30598363

RESUMO

Receptor-interacting protein kinase (RIPK) 1 functions as a key mediator of tissue homeostasis via formation of Caspase-8 activating ripoptosome complexes, positively and negatively regulating apoptosis, necroptosis, and inflammation. Here, we report an unanticipated cell-death- and inflammation-independent function of RIPK1 and Caspase-8, promoting faithful chromosome alignment in mitosis and thereby ensuring genome stability. We find that ripoptosome complexes progressively form as cells enter mitosis, peaking at metaphase and disassembling as cells exit mitosis. Genetic deletion and mitosis-specific inhibition of Ripk1 or Caspase-8 results in chromosome alignment defects independently of MLKL. We found that Polo-like kinase 1 (PLK1) is recruited into mitotic ripoptosomes, where PLK1's activity is controlled via RIPK1-dependent recruitment and Caspase-8-mediated cleavage. A fine balance of ripoptosome assembly is required as deregulated ripoptosome activity modulates PLK1-dependent phosphorylation of downstream effectors, such as BUBR1. Our data suggest that ripoptosome-mediated regulation of PLK1 contributes to faithful chromosome segregation during mitosis.


Assuntos
Caspase 8/metabolismo , Instabilidade Cromossômica , Neoplasias do Colo/enzimologia , Fibroblastos/enzimologia , Mitose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Aneuploidia , Animais , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fibroblastos/patologia , Células HT29 , Humanos , Inflamação/enzimologia , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Quinase 1 Polo-Like
3.
EMBO Rep ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816514

RESUMO

ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.

4.
EMBO J ; 40(4): e104844, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33350486

RESUMO

Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDosome (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhibitor, MDM2. Here, we demonstrate that PIDD1 is recruited to mature centrosomes by the centriolar distal appendage protein ANKRD26. PIDDosome-dependent Caspase-2 activation requires not only PIDD1 centrosomal localization, but also its autoproteolysis. Following cytokinesis failure, supernumerary centrosomes form clusters, which appear to be necessary for PIDDosome activation. In addition, in the context of DNA damage, activation of the complex results from a p53-dependent elevation of PIDD1 levels independently of centrosome amplification. We propose that PIDDosome activation can in both cases be promoted by an ANKRD26-dependent local increase in PIDD1 concentration close to the centrosome. Collectively, these findings provide a paradigm for how centrosomes can contribute to cell fate determination by igniting a signalling cascade.


Assuntos
Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Centrossomo/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Proteína Adaptadora de Sinalização CRADD/genética , Caspase 2/genética , Diferenciação Celular , Cisteína Endopeptidases/genética , Dano ao DNA , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
5.
EMBO Rep ; 24(12): e57234, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37888778

RESUMO

53BP1 acts at the crossroads between DNA repair and p53-mediated stress response. With its interactors p53 and USP28, it is part of the mitotic surveillance (or mitotic stopwatch) pathway (MSP), a sensor that monitors the duration of cell division, promoting p53-dependent cell cycle arrest when a critical time threshold is surpassed. Here, we show that Polo-like kinase 1 (PLK1) activity is essential for the time-dependent release of 53BP1 from kinetochores. PLK1 inhibition, which leads to 53BP1 persistence at kinetochores, prevents cytosolic 53BP1 association with p53 and results in a blunted MSP. Strikingly, the identification of CENP-F as the kinetochore docking partner of 53BP1 enabled us to show that measurement of mitotic timing by the MSP does not take place at kinetochores, as perturbing CENP-F-53BP1 binding had no measurable impact on the MSP. Taken together, we propose that PLK1 supports the MSP by generating a cytosolic pool of 53BP1 and that an unknown cytosolic mechanism enables the measurement of mitotic duration.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Cinetocoros/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/genética
6.
Genes Dev ; 31(1): 34-45, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130345

RESUMO

Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.


Assuntos
Centrossomo/fisiologia , Genes p53/genética , Complexos Multiproteicos/metabolismo , Ativação Transcricional/genética , Células A549 , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Centrossomo/patologia , Citocinese/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Fígado/citologia , Fígado/embriologia , Camundongos , Organogênese/genética
7.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29459486

RESUMO

Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise, at least in a petri dish. Yet, at the molecular level, this type of cell death is poorly defined and cancer cells often find ways to escape. The signaling pathways activated can lead to mitotic slippage, cell death, or senescence. Therefore, any attempt to unravel the mechanistic action of microtubule poisons will have to investigate aspects of cell cycle control, cell death initiation in mitosis and after slippage, at single-cell resolution. Here, we discuss possible mechanisms and signaling pathways controlling cell death in mitosis or after escape from mitotic arrest, as well as secondary consequences of mitotic errors, particularly sterile inflammation, and finally address the question how clinical efficacy of anti-mitotic drugs may come about and could be improved.


Assuntos
Morte Celular/genética , Mitose/genética , Neoplasias/terapia , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Humanos , Microtúbulos/genética , Neoplasias/genética , Neoplasias/patologia
8.
J Cell Sci ; 130(22): 3779-3787, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142064

RESUMO

The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the pro-form of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that include RIPK1 (also known as RIP1) and IKBKG (also known as NEMO), PCNA and RFC5, as well as nucleolar components such as NPM1 or NCL. This promiscuity in protein binding is facilitated mainly by autoprocessing of the full-length protein into various fragments that contain different structural domains. As a result, multiple responses can be mediated by protein complexes that contain a PIDD1 domain. This suggests that PIDD1 acts as an integrator for multiple types of stress that need instant attention. Examples are various types of DNA lesion but also the presence of extra centrosomes that can foster aneuploidy and, ultimately, promote DNA damage. Here, we review the role of PIDD1 in response to DNA damage and also highlight novel functions of PIDD1, such as in centrosome surveillance and scheduled polyploidisation as part of a cellular differentiation program during organogenesis.


Assuntos
Centrossomo/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/fisiologia , Animais , Apoptose , Proteína Adaptadora de Sinalização CRADD/fisiologia , Caspase 2/fisiologia , Diferenciação Celular , Dano ao DNA , Humanos , Complexos Multiproteicos/fisiologia , Nucleofosmina , Poliploidia
9.
EMBO J ; 30(16): 3322-36, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772247

RESUMO

The spindle assembly checkpoint (SAC) restrains anaphase until all chromosomes become bi-oriented on the mitotic spindle. The SAC protein Mad2 can fold into two distinct conformers, open (O) and closed (C), and can asymmetrically dimerize. Here, we describe a monoclonal antibody that specifically recognizes the dimerization interface of C-Mad2. This antibody revealed several conformation-specific features of Mad2 in human cells. Notably, we show that Mad2 requires association with Mad1 to adopt the closed conformation and that the activity of the Mad1:C-Mad2 complex undergoes regulation by p31comet-dependent 'capping'. Furthermore, C-Mad2 antibody microinjection caused an abrupt termination of the SAC and accelerated mitotic progression. Remarkably, microinjection of a Mad1-neutralizing antibody triggered a comparable mitotic acceleration. Our study provides direct in vivo evidence for the model that a kinetochore complex of Mad1:C-Mad2 acts as a template to sustain the SAC and it challenges the distinction between SAC and mitotic timer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Anáfase/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Fuso Acromático/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/imunologia , Proteínas Cdc20 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/imunologia , Dimerização , Humanos , Cinetocoros/metabolismo , Substâncias Macromoleculares , Proteínas Mad2 , Camundongos , Camundongos Endogâmicos BALB C , Mitose/efeitos dos fármacos , Mitose/fisiologia , Poro Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/imunologia , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/farmacologia , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/imunologia , Fatores de Tempo
10.
J Proteome Res ; 13(12): 5973-88, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25330945

RESUMO

In recent years, directed and, particularly, targeted mass spectrometric workflows have gained momentum as alternative techniques to conventional data-dependent acquisition (DDA) LC-MS/MS approaches. By focusing on specific peptide species, these methods allow hypothesis-driven analysis of selected proteins of interest, and they have been shown to be suited to monitor low-abundance proteins within complex mixtures. Despite their growing popularity, no study has systematically evaluated these various MS strategies in terms of quantification, detection, and identification limits when they are applied to complex samples. Here, we systematically compared the performance of conventional DDA, directed, and various targeted MS approaches on two different instruments, namely, a hybrid linear ion trap--Orbitrap and a triple quadrupole instrument. We assessed the limits of identification, quantification, and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy-labeled reference peptides, respectively, covering 6 orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed similarly in the absence of background proteins; however, when analyzing whole-cell lysates, targeted methods were at least 5-10 times more sensitive than that of the directed or DDA method. In particular, higher stage fragmentation (MS3) of the neutral loss peak using a linear ion trap increased the dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying nine phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from nonenriched pull-down samples.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Fosfopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares/análise , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação , Proteômica/métodos , Reprodutibilidade dos Testes
11.
Cancer Discov ; 14(2): 362-379, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877779

RESUMO

Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE: This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias do Colo , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Neoplasias do Colo/genética , Proliferação de Células
13.
Cell Rep ; 42(3): 112215, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917609

RESUMO

Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes proliferation. These escaping cells experience reduced DNA damage and p21 activation. Cells surviving treatment are enriched for anti-apoptotic proteins, including Triap1. Increasing Triap1 levels allows cells to survive the first treatment with reduced DNA damage and lower levels of p21; accordingly, decreasing Triap1 re-sensitizes cells to nocodazole. We show that Triap1 upregulation leads to the retention of cytochrome c in the mitochondria, opposing the partial activation of caspases caused by nocodazole. In summary, our results point to a potential role of Triap1 upregulation in the emergence of resistance to drugs that induce prolonged mitotic arrest.


Assuntos
Apoptose , Mitose , Humanos , Nocodazol/farmacologia , Regulação para Cima , Proliferação de Células , Fase G1 , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Stem Cell Res Ther ; 13(1): 440, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056433

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60-70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to find a cure. Among therapeutic possibilities are genome editing strategies based on CRISPR-Cas technology. METHODS: A comparative analysis was performed to test the most recent CRISPR-Cas technologies comprising base- and prime-editors which introduce modifications without DNA cleavages and compared with sequence substitution approaches through homology directed repair (HDR) induced by Cas9 nuclease activity. The HDR method that was found more efficient was applied to repair a CdLS-causing mutation in the NIPBL gene. Human-induced pluripotent stem cells (hiPSCs) derived from a CdLS patient carrying the c.5483G > A mutation in the NIPBL were modified through HDR to generate isogenic corrected clones. RESULTS: This study reports an efficient method to repair the NIPBL gene through HDR mediated by CRISPR-Cas and induced with a compound (NU7441) inhibiting non-homologous end joining (NHEJ) repair. This sequence repair method allowed the generation of isogenic wild-type hiPSCs clones with regular karyotype and preserved pluripotency. CONCLUSIONS: CdLS cellular models were generated which will facilitate the investigation of the disease molecular determinants and the identification of therapeutic targets. In particular, the hiPSC-based cellular models offer the paramount advantage to study the tissue differentiation stages which are altered in the CdLS clinical development. Importantly, the hiPSCs that were generated are isogenic thus providing the most controlled experimental set up between wild-type and mutated conditions.


Assuntos
Síndrome de Cornélia de Lange , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Células Clonais/metabolismo , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fenótipo , Tecnologia
16.
Cell Syst ; 13(2): 183-193.e7, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34731645

RESUMO

Pan-cancer studies sketched the genomic landscape of the tumor types spectrum. We delineated the purity- and ploidy-adjusted allele-specific profiles of 4,950 patients across 27 tumor types from the Cancer Genome Atlas (TCGA). Leveraging allele-specific data, we reclassified as loss of heterozygosity (LOH) 9% and 7% of apparent copy-number wild-type and gain calls, respectively, and overall observed more than 18 million allelic imbalance somatic events at the gene level. Reclassification of copy-number events revealed associations between driver mutations and LOH, pointing out the timings between the occurrence of point mutations and copy-number events. Integrating allele-specific genomics and matched transcriptomics, we observed that allele-specific gene status is relevant in the regulation of TP53 and its targets. Further, we disclosed the role of copy-neutral LOH in the impairment of tumor suppressor genes and in disease progression. Our results highlight the role of LOH in cancer and contribute to the understanding of tumor progression.


Assuntos
Perda de Heterozigosidade , Neoplasias , Alelos , Genômica , Humanos , Perda de Heterozigosidade/genética , Neoplasias/genética
17.
Mol Cell Oncol ; 8(3): 1893625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34027036

RESUMO

The PIDDosome is a Caspase-2-activating platform assembling in response to centrosome amplification or genotoxic stress. We have recently shown that both stimuli depend on ANKRD26 (ankyrin repeat domain-containing protein 26)-mediated localization of PIDD1 (p53-inducible protein with death domain) at the centrosome, demonstrating how this organelle can directly influence cell fate.

18.
STAR Protoc ; 2(2): 100407, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33855309

RESUMO

hTERT-RPE1 cells are genetically stable near diploid cells widely used to model cell division, DNA repair, or ciliogenesis in a non-transformed context. However, poor transfectability and limited homology-directed repair capacity hamper their amenability to gene editing. Here, we describe a protocol for rapid and efficient generation of diverse homozygous knockins. In contrast to other approaches, this strategy bypasses the need for molecular cloning. Our approach can also be applied to a variety of cell types including cancer and induced pluripotent stem cells (iPSCs).


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Introdução de Genes/métodos , Epitélio Pigmentado da Retina/citologia , Ribonucleoproteínas/genética , Linhagem Celular , Edição de Genes , Humanos
19.
Dev Cell ; 52(3): 335-349.e7, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31983631

RESUMO

E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.


Assuntos
Caspase 2/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/fisiologia , Fatores de Transcrição E2F/fisiologia , Hepatócitos/citologia , Regeneração Hepática , Poliploidia , Proteína Supressora de Tumor p53/fisiologia , Aneuploidia , Animais , Proteína Adaptadora de Sinalização CRADD/fisiologia , Centrossomo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Citocinese , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout
20.
J Cell Sci ; 125(Pt 24): 5911-5, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23447670
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA