RESUMO
Recently, we described that in the naked mole rat ovary it is possible to study the ovarian reserve and the mitotic expansion of the germ cell postnatally. Herein, we show oocyte in vitro maturation and in vitro germ cell expansion using the same ovary.
Assuntos
Reserva Ovariana , Ovário , Feminino , Humanos , Oócitos , Técnicas de Maturação in Vitro de Oócitos , Células GerminativasRESUMO
In some cooperatively breeding groups, individuals have distinct behavioral characteristics that are often stable and predictable across time. However, in others, as in the eusocial naked mole-rat, evidence for behavioral phenotypes is ambiguous. Here, we study whether the naked mole-rat can be divided into discrete phenotypes and if circulating hormone concentrations underpin these differences. Naked mole-rat colonies consist of a single breeding female and large numbers of non-reproductive subordinates that in some cases can exceed several hundred in a colony. The subordinates can potentially be divided into soldiers, who defend the colony; workers, who maintain it; and dispersers, who want to leave it. We established six colonies de novo, tracked them over three years, and assessed the behavior and hormone concentrations of the subordinates. We found that soldiers tended to be from earlier litters and were higher ranked compared to workers, whereas dispersers were distributed throughout litters and rankings. There was no difference in estradiol, testosterone, or dehydroepiandrosterone (DHEA) concentrations among phenotypes. Progesterone concentrations were higher in soldiers, but this difference appeared to be driven by a few individuals. Principal component analysis demonstrated that soldiers separated into a discrete category relative to workers/dispersers, with the highest ranked loadings being age, body mass, and testosterone concentrations. However, the higher testosterone in soldiers was correlated with large body size instead of strictly behavioral phenotype. Workers and dispersers have more overlap with each other and no hormonal differences. Thus the behavioral variation in subordinate naked mole-rats is likely not driven by circulating steroid hormone concentrations, but rather it may stem from alternative neural and/or neuroendocrine mechanisms.
Assuntos
Ratos-Toupeira , Progesterona , Animais , Desidroepiandrosterona , Estradiol , Feminino , Fenótipo , TestosteronaRESUMO
The naked mole-rat (NMR, Heterocephalus glaber) is renowned for its eusociality and exceptionally long lifespan (> 30 y) relative to its small body size (35-40 g). A NMR phenomenon that has received far less attention is that females show no decline in fertility or fecundity into their third decade of life. The age of onset of reproductive decline in many mammalian species is closely associated with the number of germ cells remaining at the age of sexual maturity. We quantified ovarian reserve size in NMRs at the youngest age (6 months) when subordinate females can begin to ovulate after removal from the queen's suppression. We then compared the NMR ovarian reserve size to values for 19 other mammalian species that were previously reported. The NMR ovarian reserve at 6 months of age is exceptionally large at 108,588 ± 69,890 primordial follicles, which is more than 10-fold larger than in mammals of a comparable size. We also observed germ cell nests in ovaries from 6-month-old NMRs, which is highly unusual since breakdown of germ cell nests and the formation of primordial follicles is generally complete by early postnatal life in other mammals. Additionally, we found germ cell nests in young adult NMRs between 1.25 and 3.75 years of age, in both reproductively activated and suppressed females. The unusually large NMR ovarian reserve provides one mechanism to account for this species' protracted fertility. Whether germ cell nests in adult ovaries contribute to the NMR's long reproductive lifespan remains to be determined.
Assuntos
Longevidade , Ratos-Toupeira/fisiologia , Oócitos , Reserva Ovariana , Ovário/citologia , Animais , Tamanho Corporal , FemininoRESUMO
The neuropeptide oxytocin (OT) influences prosocial behavior(s), aggression, and stress responsiveness, and these diverse effects are regulated in a species- and context-specific manner. The naked mole-rat (Heterocephalus glaber) is a unique species with which to study context-dependent effects of OT, exhibiting a strict social hierarchy with behavioral specialization within the subordinate caste: soldiers are aggressive and defend colonies against unfamiliar conspecifics while workers are prosocial and contribute to in-colony behaviors such as pup care. To determine if OT is involved in subcaste-specific behaviors, we compared behavioral responses between workers and soldiers of both sexes during a modified resident/intruder paradigm, and quantified activation of OT neurons in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) using the immediate-early-gene marker c-fos co-localized with OT neurons. Resident workers and soldiers were age-matched with unfamiliar worker stimulus animals as intruders, and encounters were videorecorded and scored for aggressive behaviors. Colony-matched controls were left in their home colony for the duration of the encounters. Brains were extracted and cell counts were conducted for OT immunoreactive (ir), c-fos-ir, and percentage of OT-c-fos double-labeled cells. Results indicate that resident workers were less aggressive but showed greater OT neural activity than soldiers. Furthermore, a linear model including social treatment, cortisol, and subcaste revealed that subcaste was the only significant predictor of OT-c-fos double-labeled cells in the PVN. These data suggest that in naked mole-rats OT promotes prosocial behaviors rather than aggression and that even within subordinates status exerts robust effects on brain and behavior.
Assuntos
Comportamento Animal/efeitos dos fármacos , Hierarquia Social , Neurônios/efeitos dos fármacos , Ocitocina/farmacologia , Comportamento Social , Agressão/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Ratos-Toupeira , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Supraóptico/citologia , Núcleo Supraóptico/efeitos dos fármacosRESUMO
BACKGROUND: The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition. METHODS: We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects. RESULTS: Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation. CONCLUSION: Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.
Assuntos
Hipotálamo , Caracteres Sexuais , Maturidade Sexual , Animais , Hipotálamo/metabolismo , Hipotálamo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
In the long-lived naked mole-rat (NMR), the entire process of oogenesis occurs postnatally. Germ cell numbers increase significantly in NMRs between postnatal days 5 (P5) and P8, and germs cells positive for proliferation markers (Ki-67, pHH3) are present at least until P90. Using pluripotency markers (SOX2 and OCT4) and the primordial germ cell (PGC) marker BLIMP1, we show that PGCs persist up to P90 alongside germ cells in all stages of female differentiation and undergo mitosis both in vivo and in vitro. We identified VASA+ SOX2+ cells at 6 months and at 3-years in subordinate and reproductively activated females. Reproductive activation was associated with proliferation of VASA+ SOX2+ cells. Collectively, our results suggest that highly desynchronized germ cell development and the maintenance of a small population of PGCs that can expand upon reproductive activation are unique strategies that could help to maintain the NMR's ovarian reserve for its 30-year reproductive lifespan.
Assuntos
Oogênese , Reserva Ovariana , Animais , Feminino , Diferenciação Celular , Células Germinativas , Mitose , Ovário , Ratos-ToupeiraRESUMO
BACKGROUND: The pituitary gland regulates essential physiological processes such as growth, pubertal onset, stress response, metabolism, reproduction, and lactation. While sex biases in these functions and hormone production have been described, the underlying identity, temporal deployment, and cell-type specificity of sex-biased pituitary gene regulatory networks are not fully understood. METHODS: To capture sex differences in pituitary gene regulation dynamics during postnatal development, we performed 3' untranslated region sequencing and small RNA sequencing to ascertain gene and microRNA expression, respectively, across five postnatal ages (postnatal days 12, 22, 27, 32, 37) that span the pubertal transition in female and male C57BL/6J mouse pituitaries (n = 5-6 biological replicates for each sex at each age). RESULTS: We observed over 900 instances of sex-biased gene expression and 17 sex-biased microRNAs, with the majority of sex differences occurring with puberty. Using miRNA-gene target interaction databases, we identified 18 sex-biased genes that were putative targets of 5 sex-biased microRNAs. In addition, by combining our bulk RNA-seq with publicly available male and female mouse pituitary single-nuclei RNA-seq data, we obtained evidence that cell-type proportion sex differences exist prior to puberty and persist post-puberty for three major hormone-producing cell types: somatotropes, lactotropes, and gonadotropes. Finally, we identified sex-biased genes in these three pituitary cell types after accounting for cell-type proportion differences between sexes. CONCLUSION: Our study reveals the identity and postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary. This work also highlights the importance of considering sex biases in cell-type composition when understanding sex differences in the processes regulated by the pituitary gland.
Assuntos
MicroRNAs , Hipófise , Regiões 3' não Traduzidas , Animais , Feminino , Expressão Gênica , Hormônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hipófise/metabolismoRESUMO
Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increasingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we test the hypothesis that neuronal maturation is extended in this long-lived rodent. We characterize cell proliferation and neuronal maturation in established rodent neurogenic regions over 12 months following seven days of consecutive BrdU injection. Given that naked mole-rats are eusocial (high reproductive skew where only a few socially-dominant individuals reproduce), we also looked at proliferation in brain regions relevant to the social-decision making network. Finally, we measured co-expression of EdU (newly-born cells), DCX (immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neuronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as the main source of adult cell proliferation and suggests conservation of the rostral migratory stream in this species. Our profiling of socially-relevant brain regions suggests that future work which manipulates environmental context can unveil how newly-born cells integrate into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal maturation sits at the intersection of rodents and long-lived, non-rodent species: while neurons can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal neurogenic levels are low (like long-lived species). These data establish a timeline for future investigations of longevity- and socially-related manipulations of naked mole-rat adult neurogenesis.
Assuntos
Ratos-Toupeira , Neurogênese , Animais , Bromodesoxiuridina , Longevidade/fisiologia , Ratos-Toupeira/fisiologia , Neurônios/fisiologiaRESUMO
Puberty is a key developmental milestone that marks an individual's maturation in several ways including, but not limited to, reproductive maturation, changes in behaviors and neural organization. The timing at which puberty occurs is variable both within individuals of the same species and between species. These variations can be aligned with ecological cues that delay or suppress puberty. Naked mole-rats are colony-living rodents where reproduction is restricted to a few animals; all other animals are pubertally-suppressed. Animals removed from suppressive colony cues can reproductively mature, presenting the unique opportunity to study adult-onset puberty. Recently, we found that RFRP-3 administration sustains pubertal delay in naked mole-rats removed from colony. In this review, we explore what is known about regulators that control puberty onset, the role of stress/social status in pubertal timing, the status of knowledge of pubertal suppression in naked mole-rats and what comes next.
Assuntos
Ratos-Toupeira/fisiologia , Sistemas Neurossecretores/metabolismo , Maturidade Sexual , Animais , Masculino , Comportamento Sexual Animal , Status SocialRESUMO
RNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell-types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by leveraging cell-type expression data generated by scRNA-seq and existing deconvolution methods. After evaluating scMappR with simulated RNA-seq data and benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small population of immune cells. While scMappR can work with user-supplied scRNA-seq data, we curated scRNA-seq expression matrices for â¼100 human and mouse tissues to facilitate its stand-alone use with bulk RNA-seq data from these species. Overall, scMappR is a user-friendly R package that complements traditional differential gene expression analysis of bulk RNA-seq data.
RESUMO
The social decision-making network (SDMN) is a conserved neural circuit that modulates a range of social behaviors via context-specific patterns of activation that may be controlled in part by oxytocinergic signaling. We have previously characterized oxytocin's (OT) influence on prosociality in the naked mole-rat, a eusocial mammalian species, and its altered neural distribution between animals of differing social status. Here, we asked two questions: (1) do patterns of activation in the SDMN vary by social context and (2) is functional connectivity of the SDMN altered by OT manipulation? Adult subordinate naked mole-rats were exposed to one of three types of stimuli (three behavioral paradigms: familiar adult conspecific, unfamiliar adult conspecific, or familiar pups) while manipulating OT (three manipulations: saline, OT, or OT antagonist). Immediate early gene c-Fos activity was quantified using immunohistochemistry across SDMN regions. Network analyses indicated that the SDMN is conserved in naked mole-rats and functions in a context-dependent manner. Specific brain regions were recruited with each behavioral paradigm suggesting a role for the nucleus accumbens in social valence and sociosexual interaction, the prefrontal cortex in assessing/establishing social dominance, and the hippocampus in pup recognition. Furthermore, while OT manipulation was generally disruptive to coordinated neural activity, the specific effects were context-dependent supporting the hypothesis that oxytocinergic signaling promotes context appropriate social behaviors by modulating co-ordinated activity of the SDMN.
RESUMO
The social environment can alter pubertal timing through neuroendocrine mechanisms that are not fully understood; it is thought that stress hormones (e.g., glucocorticoids or corticotropin-releasing hormone) influence the hypothalamic-pituitary-gonadal axis to inhibit puberty. Here, we use the eusocial naked mole-rat, a unique species in which social interactions in a colony (i.e. dominance of a breeding female) suppress puberty in subordinate animals. Removing subordinate naked mole-rats from this social context initiates puberty, allowing for experimental control of pubertal timing. The present study quantified gene expression for reproduction- and stress-relevant genes acting upstream of gonadotropin-releasing hormone in brain regions with reproductive and social functions in pre-pubertal, post-pubertal, and opposite sex-paired animals (which are in various stages of pubertal transition). Results indicate sex differences in patterns of neural gene expression. Known functions of genes in brain suggest stress as a key contributing factor in regulating male pubertal delay. Network analysis implicates neurokinin B (Tac3) in the arcuate nucleus of the hypothalamus as a key node in this pathway. Results also suggest an unappreciated role for the nucleus accumbens in regulating puberty.
Assuntos
Encéfalo/metabolismo , Ratos-Toupeira/crescimento & desenvolvimento , Ratos-Toupeira/genética , Caracteres Sexuais , Maturidade Sexual/genética , Comportamento Social , Animais , Peso Corporal/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Ratos-Toupeira/sangue , Especificidade de Órgãos , Esteroides/sangueRESUMO
The vast majority of what is considered fact about adult neurogenesis comes from research on laboratory mice and rats: where it happens, how it works, what it does. However, this relative exclusive focus on two rodent species has resulted in a bias on how we think about adult neurogenesis. While it might not prevent us from making conclusions about the evolutionary significance of the process or even prevent us from generalizing to diverse mammals, it certainly does not help us achieve these outcomes. Here, we argue that there is every reason to expect striking species differences in adult neurogenesis: where it happens, how it works, what it does. Species-specific adaptations in brain and behavior are paramount to survival and reproduction in diverse ecological niches and it is naive to think adult neurogenesis escaped these evolutionary pressures. A neuroethological approach to the study of adult neurogenesis is essential for a comprehensive understanding of the phenomenon. Furthermore, most of us are guilty of making strong assertions about our data in order to have impact yet this ultimately creates bias in how work is performed, interpreted, and applied. By taking a step back and actually placing our results in a much larger, non-biomedical context, we can help to reduce dogmatic thinking and create a framework for discovery.