Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 25(3): 1441-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26863662

RESUMO

Here, the experimental results of the method of filtering the effect of chromatic aberration for wide acceptance angle electrostatic lens-based system are described. This method can eliminate the effect of chromatic aberration from the images of a measured spectral image sequence by determining and removing the effect of higher and lower kinetic energy electrons on each different energy image, which leads to significant improvement of image and spectral quality. The method is based on the numerical solution of a large system of linear equations and equivalent with a multivariate strongly nonlinear deconvolution method. A matrix whose elements describe the strongly nonlinear chromatic aberration-related transmission function of the lens system acts on the vector of the ordered pixels of the distortion free spectral image sequence, and produces the vector of the ordered pixels of the measured spectral image sequence. Since the method can be applied not only on 2D real- and $k$ -space diffraction images, but also along a third dimension of the image sequence that is along the optical or in the 3D parameter space, the energy axis, it functions as a software-based imaging energy analyzer (SBIEA). It can also be applied in cases of light or other type of optics for different optical aberrations and distortions. In case of electron optics, the SBIEA method makes possible the spectral imaging without the application of any other energy filter. It is notable that this method also eliminates the disturbing background significantly in the present investigated case of reflection electron energy loss spectra. It eliminates the instrumental effects and makes possible to measure the real physical processes better.

2.
IEEE Trans Image Process ; 25(8): 3638, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27323351

RESUMO

In [1], the following support information should have been included in the first footnote.

3.
Cartilage ; 6(2): 73-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26069710

RESUMO

BACKGROUND: Focal cartilage lesions in the knee joint have limited capacity to heal. Current animal experiments show that incisions of the deep zone of a cartilage allograft allow acceptable integration for the graft. QUESTIONS/PURPOSES: We performed this clinical study to determine (1) if the multiply incised cartilage graft is surgically applicable for focal cartilage lesions, (2) whether this allograft has a potential to integrate to the repair site, and (3) if patients show clinical improvement. PATIENTS AND METHODS: Seven patients with 8 chondral lesions were enrolled into the study. Symptomatic lesions between 2 and 8 cm(2) were accepted. Additional injuries were allowed but were addressed simultaneously. Grafts were tailored to match and the deep zone of the cartilage was multiply incised to augment the basal integration before securing in place. Rigorous postoperative physiotherapy followed. At 12 and 24 months the patients' satisfaction were measured and serial magnetic resonance imaging (MRI) was performed in 6 patients. RESULTS: Following the implantations no adverse reaction occurred. MRI evaluation postoperatively showed the graft in place in 5 out of 6 patients. In 1 patient, MRI suggested partial delamination at 1 year and graft degeneration at 2 years. Short Form-36 health survey and the Lysholm knee score demonstrated a significant improvement in the first year; however, by 2 years there was a noticeable drop in the scores. Conclusions. Multiply incised pure chondral allograft used for cartilage repair appears to be a relatively safe method. Further studies are necessary to assess its potential in cartilage repair before its clinical use.

4.
IEEE Trans Image Process ; 23(7): 2834-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24808408

RESUMO

Chromatic aberration is a major issue for imaging mainly with large acceptance angle electrostatic lenses. Its correction is necessary to take advantage of the outstanding spatial and angular resolution that these lenses provide. We propose a method to eliminate the effect of chromatic aberration on the measured images by determining the impact resulting from higher and lower kinetic energies. Based on a spectral image sequence and a matrix, which describes the transmission function of the lens, a system of linear equations is solved to approximate the 2D spectral intensity distribution of the sample surface. We present the description of our method and preliminary test results, which show significant contrast and image quality improvement. The presented algorithm can also be applied as a software-based energy analyzer.


Assuntos
Lentes , Óptica e Fotônica/instrumentação , Eletricidade Estática , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA